概述
关于二叉树,我们都不陌生,许多基于递归的问题发起点都是一个二叉树的root节点。对于各种二叉树的问题,我们也是通过dfs进行求解。例如求二叉树的深度、最近公共祖先等
算法分析
关于二叉树的中序遍历,我们都知道应该先访问最左边的节点,然后找到root根节点,再访问右节点。对应上图的二叉树,其中序遍历的结果应为:1 -> 2 -> 3 -> 4
算法编码
递归版本
- 递归的中序遍历写法较为简便,只需要通过inOrder方法写在打印根节点前后的位置即可
public void inOrder(TreeNode root) {
if(root == null) {
return;
}
inOrder(root.left);
System.out.print(root.value);
inOrder(root.right);
}
非递归版本
- 中序遍历二叉树我们需要优先遍历左子树,然后才是根节点。但是根节点是优先于左子树被访问到的。这种反转的先后关系(先遍历、后打印),就需要借助栈(Stack)完成
如何给出遍历的条件终止和循环也是需要考虑的,我们知道,只要根节点的左子树持续存在,我们就应该先打印左子树的节点,因此这里的逻辑就变成下述代码:
while(cur != null ) {
stack.push(cur);
cur = cur.left;
}
- 如果是上面这种写法,当不存在左节点的时候,循环会跳出while部分,但是我们再取栈顶继续向后遍历的时候,依然要继续while的过程,因此我们的while条件就不能只是 cur的左子树不空,还应该加上当前栈内元素个数大于0
- 因此上面的代码可以改为:
while(cur != null || !stack.isEmpty()) {
while(cur != null ) {
stack.push(cur);
cur = cur.left;
}
}
- 如果cur没有左子树的情况下,我们正常执行出栈,即 stack.pop(),并打印出栈的元素。改造后的代码如下所示
while(cur != null || !stack.isEmpty()) {
while(cur != null ) {
stack.push(cur);
cur = cur.left;
}
TreeNode top = st.pop();
System.out.println(top.val);
}
- 如果有右子树的情况下,cur转换为右子树,继续上述过程
while(cur != null || !stack.isEmpty()) {
if(cur != null ) {
stack.push(cur);
cur = cur.left;
}
cur = st.pop();
//中序遍历的顺序结果打印
System.out.println(cur.val);
cur = cur.right;
}
算法总结
中序遍历在求解二叉树top-K问题的时候比较实用,可以直接通过打印、取值的情况下完成结果集的获取;如果求第k大或者第k小的元素,直接通过统计变量进行递减实现结果获取。希望大家都能清晰地掌握。