人工神经网络
人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织可以 模拟生物神经系统对真实世界物体所做出的真实反映。
人工神经网络采用误差反传算法或者变化形式的网络模型,具有自学习性,较好的容错性和优良的非线性逼近能力。
神经网络模型和网络结构
①神经元模型
②激活函数
③网络模型
④工作状态
⑤学习方式
建立和应用神经网络的步骤
1、网络结构的确定
包含网络的拓扑结构和每个神经元相应函数的选取
2、权值和阈值的确定
通过学习得到,为有指导的学习,就是利用已知的一组正确输入,输出数据,调整权值和阈值使得网络输出和理想输出偏差小。
3、工作阶段
用带有确定权重和阈值的神经网络解决实际问题的过程。
网络模型
a前馈神经网络
只在训练过程中会有反馈信号,而在分类过程中数据只能向前传送,直到到达输出层,层间没有向后的反馈信号。
b反馈神经网络
从输出到输入具有反馈临界的神经网络,其结构比前馈网络要复杂的得多。
c自组织网络
同坐自动寻找样本中的内在规律和本质属性,自组织,自适应地改变网络参数与结构。
工作状态
①学习(训练)
利用算法来调整权重
②工作
分类或预测工作
学习方式
①有导师学习
将训练集送入,根据实际输出与期望输出的差别来调整权值(BP算法)
②无导师学习
抽取样本中蕴含的统计特性,并以神经元之间的联系权的形式存于网络中(Hebb算法)
本文中所有图片均来自B站up主:老师我是小小白