素数筛(线性筛法)

目录

文章目录

前言

一、什么是线性筛法?

二、原理是什么?

1.最小质数

2.剔除非质数

3.如何保证不重复剔除非质数?

三、代码实现


前言

介绍线性筛法的理论基础及其代码实现


提示:以下是本篇文章正文内容,下面案例可供参考

一、什么是线性筛法?

线性筛法是指在O(n)的复杂度情况下,筛选出所给数的所有质数

二、原理是什么?

1.最小质数

由公理可知,n都可以被分解为多个质数的乘积,那么,在这些质数中,我们总能找到一个最小的数x,那么x就是n的最小质数

2.剔除非质数

既然有了最小质数x,针对每一个数,我们只需要从2开始,逐条对2-n进行遍历(假设我们此时遍历到的数是i),如果发现i%x=0,

那么我们就知道这个数要被剔除掉因为它可以被至少两个数的乘积表示(不满足质数的定义)

3.如何保证不重复剔除非质数?

我们知道,45可以是3*15,或者是是5*9,如果我们按照第二步的想法,必将重复筛掉45两次,如果n足够大,这将会有很多重复操作,是不可接受的

那么我们该怎么做?

很简单,我们只要保证如一开始所说的,让45被他的最小质数(3)给筛掉就行,那么又该怎么做?

if(i%pri[j]==0)break;

这句话有什么意义?我们来打个比方,如果此时的i=4,即12=2*2*3=3*4,我们需要让12被2给筛掉

那么当pri[j]=2时,我们就要停止这个for循环了,为什么要这么做?

vis[pri[j]*i]=1;

很简单,因为i此时能被2i=12=2*2*3),那么我们可不可以断言,x = pri[j] * i = pri[j] * 2 * k

 (也就是说x的最小质数是2)也可以被2给表示?

答案是肯定的,由此我们可以推断,我们此时不break,就会在这次循环筛掉12(3*4,通过3筛掉12)

但是下一轮循环我们又会通过2*6筛掉12,这显然不符合我们的目的,保证每个数被筛一次,所以我们只要

确保每个数被自己的最小质数筛掉,换言之,就是当i能被当前的质数整除时(当前整数就是i的最小质数)

就break,这样后面的数(后面所有含有i的数不会被当前循环筛掉)就不会被重复筛掉。


三、代码实现

int pri[N+9>>1],now;
bool vis[N+9];
void init(){
    for(int i=2;i<=N;i++){
        if(!vis[i])pri[++now]=i;
        for(int j=1;j<=now&&pri[j]*i<=N;j++){
            vis[pri[j]*i]=1;
            if(i%pri[j]==0)break;
        }
    }
}
### 回答1: 线性筛是一种常用的求素数的方,它的思想简单且高效。下面是使用Java语言实现线性筛求素数的代码: ```java import java.util.ArrayList; import java.util.Arrays; import java.util.List; public class LinearSieve { public static List<Integer> getPrimes(int n) { boolean[] isComposite = new boolean[n + 1]; List<Integer> primes = new ArrayList<>(); for (int i = 2; i <= n; i++) { if (!isComposite[i]) { primes.add(i); } for (int j = 0; j < primes.size() && i * primes.get(j) <= n; j++) { isComposite[i * primes.get(j)] = true; if (i % primes.get(j) == 0) { break; } } } return primes; } public static void main(String[] args) { int n = 100; List<Integer> primes = getPrimes(n); System.out.println("从 2 到 " + n + " 的素数为:"); for (int prime : primes) { System.out.print(prime + " "); } } } ``` 以上代码中,我们使用了一个布尔数组`isComposite`来标记是否为合数。初始时,将所有数都标记为非合数。然后从2开始,遍历到n,如果某个数i是合数,则跳过;如果是素数,则将其加入到素数列表中,并标记它的倍数为合数。遍历结束后,我们得到了从2到n的所有素数。 在main函数中,我们设置n为100,调用`getPrimes`函数获取从2到100的素数,并打印出来。 运行结果为:从 2 到 100 的素数为:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97。 ### 回答2: 线性筛是一种高效地筛选出一定范围内的素数的算法。下面是用Java实现线性筛求素数的代码: ```java import java.util.*; public class LinearSieve { public static List<Integer> sieve(int n) { boolean[] isPrime = new boolean[n + 1]; Arrays.fill(isPrime, true); // 将所有数初始化为素数 List<Integer> primes = new ArrayList<>(); for (int i = 2; i <= n; ++i) { if (isPrime[i]) { primes.add(i); // 将素数加入结果列表 } for (int j = 0; j < primes.size() && i * primes.get(j) <= n; ++j) { isPrime[i * primes.get(j)] = false; // 将当前素数倍数标记为非素数 if (i % primes.get(j) == 0) { break; // 若当前数为素数倍数,跳出内层循环 } } } return primes; } public static void main(String[] args) { int n = 100; // 范围上限 List<Integer> primes = sieve(n); System.out.println("范围[2, " + n + "]内的素数有:"); for (int prime : primes) { System.out.print(prime + " "); } } } ``` 通过线性筛,我们首先将所有数初始化为素数,然后从2开始,将每个素数的倍数标记为非素数,直到筛选结束。最后,将筛选出的素数存入结果列表中。在上述代码中,我们以100为例,调用`sieve`方求解范围内的素数,并输出结果。 当我们运行上述代码时,将会得到范围[2, 100]内的素数列表: ``` 范围[2, 100]内的素数有: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 ``` 以上就是使用Java实现线性筛求素数的代码及结果。 ### 回答3: 线性筛是一种用于求解素数的算法,可以高效地找出某一个范围内的所有素数。下面是使用Java语言实现线性筛求素数的代码: ```java import java.util.ArrayList; import java.util.List; public class PrimeNumbers { public static List<Integer> getPrimeNumbers(int n) { List<Integer> primeNumbers = new ArrayList<>(); boolean[] isComposite = new boolean[n + 1]; for (int i = 2; i <= n; i++) { if (!isComposite[i]) { primeNumbers.add(i); } for (int j = 0; j < primeNumbers.size() && i * primeNumbers.get(j) <= n; j++) { isComposite[i * primeNumbers.get(j)] = true; if (i % primeNumbers.get(j) == 0) { break; } } } return primeNumbers; } public static void main(String[] args) { int n = 100; List<Integer> primeNumbers = getPrimeNumbers(n); System.out.println("在[2, " + n + "]范围内的素数有:"); for (int number : primeNumbers) { System.out.println(number); } } } ``` 这段代码使用了一个布尔数组isComposite来记录某个数是否为合数(非素数),初始时假设所有数都是质数,然后从2开始遍历到n,如果某个数i没有被标记为合数,就将其添加到素数列表中,并将i与已有的质数依次相乘,将其标记为合数。 运行以上代码,可以求解出2到100之间的所有素数。输出结果如下: ``` 在[2, 100]范围内的素数有: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 ``` 通过线性筛,我们可以高效地找到某个范围内的素数,而不需要遍历所有的数进行判断。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值