1.由于内存不够引起
在linux下执行top命令查看各进程使用内存情况
如果发现没有进程耗费太大的内存
查看空闲内存:free -m
发现空闲内存所剩无几:
buffers与cached占用了将近一半的内存
什么是buffer/cache?
buffer和cache是两个在计算机技术中被用滥的名词,放在不通语境下会有不同的意义。在Linux的内存管理中,这里的buffer指Linux内存的:Buffer cache。这里的cache指Linux内存中的:Page cache。翻译成中文可以叫做缓冲区缓存和页面缓存。在历史上,它们一个(buffer)被用来当成对io设备写的缓存,而另一个(cache)被用来当作对io设备的读缓存,这里的io设备,主要指的是块设备文件和文件系统上的普通文件。但是现在,它们的意义已经不一样了。在当前的内核中,page cache顾名思义就是针对内存页的缓存,说白了就是,如果有内存是以page进行分配管理的,都可以使用page cache作为其缓存来管理使用。当然,不是所有的内存都是以页(page)进行管理的,也有很多是针对块(block)进行管理的,这部分内存使用如果要用到cache功能,则都集中到buffer cache中来使用。(从这个角度出发,是不是buffer cache改名叫做block cache更好?)然而,也不是所有块(block)都有固定长度,系统上块的长度主要是根据所使用的块设备决定的,而页长度在X86上无论是32位还是64位都是4k。
明白了这两套缓存系统的区别,就可以理解它们究竟都可以用来做什么了。
什么是page cache?
Page cache主要用来作为文件系统上的文件数据的缓存来用,尤其是针对当进程对文件有read/write操作的时候。如果你仔细想想的话,作为可以映射文件到内存的系统调用:mmap是不是很自然的也应该用到page cache?在当前的系统实现里,page cache也被作为其它文件类型的缓存设备来用,所以事实上page cache也负责了大部分的块设备文件的缓存工作。
什么是buffer cache
Buffer cache则主要是设计用来在系统对块设备进行读写的时候,对块进行数据缓存的系统来使用。这意味着某些对块的操作会使用buffer cache进行缓存,比如我们在格式化文件系统的时候。一般情况下两个缓存系统是一起配合使用的,比如当我们对一个文件进行写操作的时候,page cache的内容会被改变,而buffer cache则可以用来将page标记为不同的缓冲区,并记录是哪一个缓冲区被修改了。这样,内核在后续执行脏数据的回写(writeback)时,就不用将整个page写回,而只需要写回修改的部分即可。
如何回收cache?
Linux内核会在内存将要耗尽的时候,触发内存回收的工作,以便释放出内存给急需内存的进程使用。一般情况下,这个操作中主要的内存释放都来自于对buffer/cache的释放。尤其是被使用更多的cache空间。既然它主要用来做缓存,只是在内存够用的时候加快进程对文件的读写速度,那么在内存压力较大的情况下,当然有必要清空释放cache,作为free空间分给相关进程使用。所以一般情况下,我们认为buffer/cache空间可以被释放,这个理解是正确的。
但是这种清缓存的工作也并不是没有成本。理解cache是干什么的就可以明白清缓存必须保证cache中的数据跟对应文件中的数据一致,才能对cache进行释放。所以伴随着cache清除的行为的,一般都是系统IO飙高。因为内核要对比cache中的数据和对应硬盘文件上的数据是否一致,如果不一致需要写回,之后才能回收。
cat /proc/sys/vm/drop_caches
1
方法是:
echo 1 > /proc/sys/vm/drop_caches
当然,这个文件可以设置的值分别为1、2、3。它们所表示的含义为:
echo 1 > /proc/sys/vm/drop_caches:表示清除pagecache。
echo 2 > /proc/sys/vm/drop_caches:表示清除回收slab分配器中的对象(包括目录项缓存和inode缓存)。slab分配器是内核中管理内存的一种机制,其中很多缓存数据实现都是用的pagecache。
echo 3 > /proc/sys/vm/drop_caches:表示清除pagecache和slab分配器中的缓存对象。
我们这里执行:echo 3,执行之后发现buffer跟cache所占内存明显小了
2.批量删除hadoop中的任务
for i in hadoop job -list | grep -w root| awk '{print $1}' | grep job_
; do hadoop job -kill $i; done
for i in yarn application -list | grep -w root| awk '{print $1}' | grep application_
; do yarn application -kill $i; done
3.map,reudce锁死问题:
(我们用的CDH平台,解决方式是把mapreduce.job.reduce.slowstart.completedmaps中的参数由0.8改为1)参考博客:https://www.cnblogs.com/yueweimian/p/4667888.html
"4 .java.io.IOException: Filesystem closed"
多线程并发调用org.apache.hadoop.fs.FileSystem.close()
解决方式:
禁用hdfs缓冲
conf.setBoolean(“fs.hdfs.impl.disable.cache”, true);
"5.hbase预分区后只有一个map"
解决方式:
默认map数量是由region数量决定的,但是好像没有起作用,用TableMapReduceUtil.initTableMapperJob中的scan,有多少个scan就有多少个map
List scans = getScans(conf);
TableMapReduceUtil.initTableMapperJob(scans, PerformanceCounterDJob.PerformanceMapper.class,
ImmutableBytesWritable.class, LongWritable.class, job);