这个题比较简单,这里给出两种写法:
1.
#include<stdio.h>
int main()
{
int i = 0;
int num = 0;
for (num = 100; num <= 200; num++)
{
for (i = 2; i < num / 2; i++)
{
if (num % i == 0)
{
break;
}
}
if (i >= (num/2))
{
printf("%5d", num);
}
}
return 0;
}
2.
#include<stdio.h>
int main()
{
int i = 0;
int num = 0;
for (num = 100; num <= 200; num++)
{
int flag = 1;
for (i = 2; i < num / 2; i++)
{
if (num % i == 0)
{
flag = 0;
break;
}
}
if (flag == 1)
{
printf("%5d", num);
}
}
return 0;
}
这两种写法其实解题思想一致,只是判断方法不同
从 for (i = 2; i <=num / 2; i++) 我们可以看出,我们只是模了2~num/2,并没有模到num,这里解释一下
若num不是素数,那么它的最小因数是2,它的最大因数也不会超过num/2,所以我们只模到num/2
同理,这里我们可以再次优化一下,num = √num*√num,所以它的最大因数也不会超过√num,所以还可以这样写
#include<stdio.h>
#include<math.h>
int main()
{
int i = 0;
int num = 0;
for (num = 100; num <= 200; num++)
{
int flag = 1;
for (i = 2; i <= sqrt(num) ; i++)
{
if (num % i == 0)
{
flag = 0;
break;
}
}
if (flag == 1)
{
printf("%5d", num);
}
}
return 0;
}
注意这里的sqrt(num)表示: num开根号,因为要定义sqrt,这里引入头文件#include<math.h>。这样就会让循环次数更少了,提高了运行效率。