神经网络进一步优化

指数衰减的学习率

学习率决定了参数每次更新的幅度。如果幅度过大,那么可能导致参数在极优值的两侧来回移动。相反,当学习率过小时,虽然能保证收敛性,但是会大大降低优化速度。

为了解决设置学习率的问题,TensorFlow提供了一种更加灵活的学习率设置方法——指数衰减法。tf.train.exponential_decay函数是实现了指数衰减学习率,先使用较大的学习率来快速得到一个较优的解,然后随着迭代的继续逐步减小学习率,使得模型在训练后期更加稳定。

decay_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)

global_step = tf.Variable(0)

# 通过exponential_decay函数生成学习率
learning_rate = tf.train.exponential_decay(0.1, global_step, 100, 0.96, staircase=True)

# 使用指数衰减的学习率。在minimize函数中传入global_step将自动更新global_step参数,从而使得学习率也得到相应更新。
learning_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(...my loss..., global_step=global_step)

staircase的默认值为False,这时学习率随迭代轮数变化为曲线函数。当staircase的值被设置为True时,global_step/decay_steps会被转换成整数,这使得学习率成为一个阶梯函数。

过拟合问题

过拟合指的是当一个模型过为复杂之后,它可以很好地“记忆”每一个训练数据中随机噪音的部分而忘记了要去“学习”训练数据中通用的趋势。

为了避免过拟合问题,一个非常常用的方法是正则化。正则化的思想就是在损失函数中加入刻画模型复杂程度的指标。假设用于刻画模型在训练数据上表现的损失函数为J(θ),那么在优化时不是直接优化J(θ),而是优化J(θ)+λR(w)。其中R(w)刻画的是模型的复杂程度,而λ表示模型复杂损失在总损失中的比例。注意此处的θ表示的是一个神经网络中所有的参数,包括边上的权重w和偏置项b。一般来说模型复杂度只由权重w决定。

常用的刻画模型复杂度的函数R(w)有两种:L1正则化、L2正则化。

L1正则化与L2正则化的区别

  • L1正则化会让参数变得更稀疏,而L2正则化不会。所谓参数变得更稀疏是指会有更多的参数变为0,这样可以达到类似特征选取的功能。
  • L1正则化的计算公式不可导,而L2正则化公式可导。

无论是哪一种正则化方式,基本的思想都是希望通过限制权重的大小,使得模型不能任意拟合训练数据中的随机噪音。在实践中,可以将L1正则化和L2正则化同时使用。

w = tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1))
y = tf.matmul(x, w)

loss = tf.reduce_mean(tf.square(y_ - y)) + tf.contrib.layers.l2_regularizer(λ)(w)

TensorFlow提供了tf.contrib.layers.l2_regularizer函数,它可以返回一个函数,这个函数可以计算一个给定参数的L2正则化项的值。类似的,tf.contrib.layers.l1_regularizer函数可以计算L1正则化项的值。

为了解决当神经网络的参数增多之后可能导致损失函数loss的定义很长,以及当网络结构复杂之后定义网络结构部分和计算损失函数的部分可能不在同一个函数中这些问题,可以使用TensorFlow中提供的集合,它可以在一个计算图中保存一组实体。

通过集合计算一个5层神经网络带L2正则化的损失函数的计算方法

# 获取一层神经网络边上的权重,并将这个权重的L2正则化损失加入名称为‘losses’的集合中
def get_weight(shape, lamb):
    var = tf.Variable(tf.random_normal(shape), dtype=tf.float32)
    tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(lamb)(var))
    return var

x = tf.placeholder(tf.float32, shape=(None, 2))
y_ = tf.placeholder(tf.float32, shape=(None, 1))
batch_size = 8
layer_dimension = [2, 10, 10, 10, 1]
n_layers = len(layer_dimension)

cur_layer = x
in_dimension = layer_dimension[0]

for i in range(1, n_layers):
    out_dimension = layer_dimension[i]
    weight = get_weight([in_dimension, out_dimension], 0.001)
    bias = tf.Variable(tf.constant(0.1, shape=[out_dimension]))

    cur_layer = tf.nn.relu(tf.matmul(cur_layer, weight) + bias)

    in_dimension = layer_dimension[i]

mse_loss = tf.reduce_mean(tf.square(y_ - cur_layer))

tf.add_to_collection('losses', mse_loss)

loss = tf.add_n(tf.get_collection('losses'))

滑动平均模型

滑动平均模型可以使模型在测试数据上更健壮。在采用随机梯度下降算法训练神经网络时,使用滑动平均模型在很多应用中都可以在一定程度提高最终模型在测试数据上的表现。

在TensorFlow中提供了tf.train.ExponentialMovingAverage函数来实现滑动平均模型。

在初始化ExponentialMovingAverage时需要提供一个衰减率decay,用于控制模型更新的速度,decay越大模型越趋于稳定。在实际应用中,decay一般会设成非常接近1的数(比如0.999或0.9999)。为了使得模型在训练前期可以更新得更快,ExponentialMovingAverage还提供了num_updates参数来动态设置decay的大小。如果在xponentialMovingAverage初始化时提供了num_updates参数,那么每次使用的衰减率将是:

min{decay, (1+num_updates)/(10+updates)}

ExponentialMovingAverage对每一个变量会维护一个影子变量,其初始值就是相应变量的初始值,而每次运行变量更新时,影子变量的值会更新为:

shadow_varible = decay * shadow_variable + (1-decay) * variable

v1 = tf.Variable(0, dtype=tf.float32)
step = tf.Variable(0, trainable=False)

ema = tf.train.ExponentialMovingAverage(0.99, step)
maintain_averages_op = ema.apply([v1])

with tf.Session() as sess:
    init_op = tf.global_variables_initializer()
    sess.run(init_op)

    print(sess.run([v1, ema.average(v1)]))  # [0.0, 0.0]

    sess.run(tf.assign(v1, 5))
    sess.run(maintain_averages_op)
    print(sess.run([v1, ema.average(v1)]))  # [5.0, 4.5]

    sess.run(tf.assign(v1, 10))
    sess.run(tf.assign(step, 10000))
    sess.run(maintain_averages_op)
    print(sess.run([v1, ema.average(v1)]))  # [10.0, 4.555]

    sess.run(maintain_averages_op)
    print(sess.run([v1, ema.average(v1)]))  # [10.0, 4.60945]

(最近更新:2019年04月13日)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园的建设目标是通过数据整合、全面共享,实现校园内教学、科研、管理、服务流程的数字化、信息化、智能化和多媒体化,以提高资源利用率和管理效率,确保校园安全。 智慧校园的建设思路包括构建统一支撑平台、建立完善管理体系、大数据辅助决策和建设校园智慧环境。通过云架构的数据中心与智慧的学习、办公环境,实现日常教学活动、资源建设情况、学业水平情况的全面统计和分析,为决策提供辅助。此外,智慧校园还涵盖了多媒体教学、智慧录播、电子图书馆、VR教室等多种教学模式,以及校园网络、智慧班牌、校园广播等教务管理功能,旨在提升教学品质和管理水平。 智慧校园的详细方案设计进一步细化了教学、教务、安防和运维等多个方面的应用。例如,在智慧教学领域,通过多媒体教学、智慧录播、电子图书馆等技术,实现教学资源的共享和教学模式的创新。在智慧教务方面,校园网络、考场监控、智慧班牌等系统为校园管理提供了便捷和高效。智慧安防系统包括视频监控、一键报警、阳光厨房等,确保校园安全。智慧运维则通过综合管理平台、设备管理、能效管理和资产管理,实现校园设施的智能化管理。 智慧校园的优势和价值体现在个性化互动的智慧教学、协同高效的校园管理、无处不在的校园学习、全面感知的校园环境和轻松便捷的校园生活等方面。通过智慧校园的建设,可以促进教育资源的均衡化,提高教育质量和管理效率,同时保障校园安全和提升师生的学习体验。 总之,智慧校园解决方案通过整合现代信息技术,如云计算、大数据、物联网和人工智能,为教育行业带来了革命性的变革。它不仅提高了教育的质量和效率,还为师生创造了一个更加安全、便捷和富有智慧的学习与生活环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值