POJ4115:鸣人和佐助
描述
已知一张地图(以二维矩阵的形式表示)以及佐助和鸣人的位置。地图上的每个位置都可以走到,只不过有些位置上有大蛇丸的手下,需要先打败大蛇丸的手下才能到这些位置。鸣人有一定数量的查克拉,每一个单位的查克拉可以打败一个大蛇丸的手下。假设鸣人可以往上下左右四个方向移动,每移动一个距离需要花费1个单位时间,打败大蛇丸的手下不需要时间。如果鸣人查克拉消耗完了,则只可以走到没有大蛇丸手下的位置,不可以再移动到有大蛇丸手下的位置。佐助在此期间不移动,大蛇丸的手下也不移动。请问,鸣人要追上佐助最少需要花费多少时间?输入
输入的第一行包含三个整数:M,N,T。代表M行N列的地图和鸣人初始的查克拉数量T。0 < M,N < 200,0 ≤ T < 10
后面是M行N列的地图,其中@代表鸣人,+代表佐助。*代表通路,#代表大蛇丸的手下。输出
输出包含一个整数R,代表鸣人追上佐助最少需要花费的时间。如果鸣人无法追上佐助,则输出-1。样例输入
样例输入1
4 4 1
#@##
**##
###+
****
样例输入2
4 4 2
#@##
**##
###+
****
样例输出
样例输出1
6
样例输出2
4
思路:
首先此题是一个迷宫问题,是从某一个点要到某一个点,在这中间呢,又加入了消耗查克拉这个条件,我们可以按照深搜+剪枝来做,也可以直接用广搜来找最短路。
那么这道题的状态是什么?是又鸣人的所在位置以及鸣人所剩查克拉决定的,(i,j,n),初始状态是(i0,j0,N),终止状态是(i,i,n),达到佐助位置即可。因为用广搜,所以到达即是最短。
另外我们需要判重,用深搜只需要看这个点有没有走过,用广搜的话就要加入查克拉的消耗情况,所以是三维的visit数组。
AC代码
#include<iostream>
#include<cstdio>