题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,
因此输出为该子数组的和18。
分析:这个问题在各大公司面试中出现频率之频繁,被人引用次数之多,非一般面试题可与之匹敌。单凭这点,就没有理由不入选狂想曲系列中了。此题曾作为本人之前整理的微软100题中的第3题,至今反响也很大。ok,下面,咱们来一步一步分析这个题:
1、求一个数组的最大子数组和,如此序列1, -2, 3, 10, -4, 7, 2, -5,我想最最直观也是最野蛮的办法便是,三个for循环三层遍历,求出数组中每一个子数组的和,最终求出这些子数组的最大的一个值。
记Sum[i, …, j]为数组A中第i个元素到第j个元素的和(其中0 <= i <= j < n),遍历所有可能的Sum[i, …, j],那么时间复杂度为O(N^3):
//本段代码引自编程之美
int MaxSum(int* A, int n)
{
int maximum = -INF;
int sum=0;
for(int i = 0; i < n; i++)
{
for(int j = i; j < n; j++)
{
for(int k = i; k <= j; k++)
{
sum += A[k];
}
if(sum > maximum)
maximum = sum;
sum=0; //这里要记得清零,否则的话sum最终存放的是所有子数组的和。也就是编程之美上所说的bug。多谢苍狼。
}
}
return maximum;
}
2、其实这个问题,在我之前上传的微软100题,答案V0.2版[第1-20题答案],便直接给出了以下O(N)的算法:view plaincopy to clipboardprint?
//copyright@ July 2010/10/18
//updated,2011.05.25.
#include <iostream.h>
int maxSum(int* a, int n)
{
int sum=0;
//其实要处理全是负数的情况,很简单,如稍后下面第3点所见,直接把这句改成:"int sum=a[0]"即可
//也可以不改,当全是负数的情况,直接返回0,也不见得不行。
int b=0;
for(int i=0; i<n; i++)
{
if(b<0) //...
b=a[i];
else
b+=a[i];
if(sum<b)
sum=b;
}
return sum;
}
int main()
{
int a[10]={1, -2, 3, 10, -4, 7, 2, -5};
//int a[]={-1,-2,-3,-4}; //测试全是负数的用例
cout<<maxSum(a,8)<<endl;
return 0;
}
/*-------------------------------------
解释下:
例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,
那么最大的子数组为3, 10, -4, 7, 2,
因此输出为该子数组的和18。
所有的东西都在以下俩行,
即:
b : 0 1 -1 3 13 9 16 18 13
sum: 0 1 1 3 13 13 16 18 18
其实算法很简单,当前面的几个数,加起来后,b<0后,
把b重新赋值,置为下一个元素,b=a[i]。
当b>sum,则更新sum=b;
若b<sum,则sum保持原值,不更新。。July、10/31。
----------------------------------*/
//copyright@ July 2010/10/18
//updated,2011.05.25.
#include <iostream.h>
int maxSum(int* a, int n)
{
int sum=0;
//其实要处理全是负数的情况,很简单,如稍后下面第3点所见,直接把这句改成:"int sum=a[0]"即可
//也可以不改,当全是负数的情况,直接返回0,也不见得不行。
int b=0;
for(int i=0; i<n; i++)
{
if(b<0) //...
b=a[i];
else
b+=a[i];
if(sum<b)
sum=b;
}
return sum;
}
int main()
{
int a[10]={1, -2, 3, 10, -4, 7, 2, -5};
//int a[]={-1,-2,-3,-4}; //测试全是负数的用例
cout<<maxSum(a,8)<<endl;
return 0;
}
/*-------------------------------------
解释下:
例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,
那么最大的子数组为3, 10, -4, 7, 2,
因此输出为该子数组的和18。
所有的东西都在以下俩行,
即:
b : 0 1 -1 3 13 9 16 18 13
sum: 0 1 1 3 13 13 16 18 18
其实算法很简单,当前面的几个数,加起来后,b<0后,
把b重新赋值,置为下一个元素,b=a[i]。
当b>sum,则更新sum=b;
若b<sum,则sum保持原值,不更新。。July、10/31。
----------------------------------*/
3、不少朋友看到上面的答案之后,认为上述思路2的代码,没有处理全是负数的情况,当全是负数的情况时,我们可以让程序返回0,也可以让其返回最大的那个负数,下面便是前几日重写的,修改后的处理全是负数情况(返回最大的负数)的代码:
view plaincopy to clipboardprint?
//copyright@ July
//July、updated,2011.05.25。
#include <iostream.h>
#define n 4 //多定义了一个变量
int maxsum(int a[n])
//于此处,你能看到上述思路2代码(指针)的优势
{
int max=a[0]; //全负情况,返回最大数
int sum=0;
for(int j=0;j<n;j++)
{
if(sum>=0) //如果加上某个元素,sum>=0的话,就加
sum+=a[j];
else
sum=a[j]; //如果加上某个元素,sum<0了,就不加
if(sum>max)
max=sum;
}
return max;
}
int main()
{
int a[]={-1,-2,-3,-4};
cout<<maxsum(a)<<endl;
return 0;
}
//copyright@ July
//July、updated,2011.05.25。
#include <iostream.h>
#define n 4 //多定义了一个变量
int maxsum(int a[n])
//于此处,你能看到上述思路2代码(指针)的优势
{
int max=a[0]; //全负情况,返回最大数
int sum=0;
for(int j=0;j<n;j++)
{
if(sum>=0) //如果加上某个元素,sum>=0的话,就加
sum+=a[j];
else
sum=a[j]; //如果加上某个元素,sum<0了,就不加
if(sum>max)
max=sum;
}
return max;
}
int main()
{
int a[]={-1,-2,-3,-4};
cout<<maxsum(a)<<endl;
return 0;
}
4、DP解法的具体方程:@ flyinghearts:设sum[i] 为前i个元素中,包含第i个元素且和最大的连续子数组,result 为已找到的子数组中和最大的。对第i+1个元素有两种选择:做为新子数组的第一个元素、放入前面找到的子数组。
sum[i+1] = max(a[i+1], sum[i] + a[i+1])
result = max(result, sum[i])