求子数组的最大和

题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。

例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,
因此输出为该子数组的和18。

分析:这个问题在各大公司面试中出现频率之频繁,被人引用次数之多,非一般面试题可与之匹敌。单凭这点,就没有理由不入选狂想曲系列中了。此题曾作为本人之前整理的微软100题中的第3题,至今反响也很大。ok,下面,咱们来一步一步分析这个题:
      1、求一个数组的最大子数组和,如此序列1, -2, 3, 10, -4, 7, 2, -5,我想最最直观也是最野蛮的办法便是,三个for循环三层遍历,求出数组中每一个子数组的和,最终求出这些子数组的最大的一个值。
记Sum[i, …, j]为数组A中第i个元素到第j个元素的和(其中0 <= i <= j < n),遍历所有可能的Sum[i, …, j],那么时间复杂度为O(N^3):

//本段代码引自编程之美
int MaxSum(int* A, int n)
{
 int maximum = -INF;
 int sum=0;  
 for(int i = 0; i < n; i++)
 {
  for(int j = i; j < n; j++)
  {
   for(int k = i; k <= j; k++)
   {
    sum += A[k];
   }
   if(sum > maximum)
    maximum = sum;

   sum=0;   //这里要记得清零,否则的话sum最终存放的是所有子数组的和。也就是编程之美上所说的bug。多谢苍狼。
  }
 }
 return maximum;
}

      2、其实这个问题,在我之前上传的微软100题,答案V0.2版[第1-20题答案],便直接给出了以下O(N)的算法:view plaincopy to clipboardprint?
//copyright@ July 2010/10/18  
//updated,2011.05.25.  
#include <iostream.h>  
 
int maxSum(int* a, int n)  
{  
    int sum=0;  
    //其实要处理全是负数的情况,很简单,如稍后下面第3点所见,直接把这句改成:"int sum=a[0]"即可  
    //也可以不改,当全是负数的情况,直接返回0,也不见得不行。  
    int b=0;  
      
    for(int i=0; i<n; i++)  
    {  
        if(b<0)           //...  
            b=a[i];  
        else 
            b+=a[i];  
        if(sum<b)  
            sum=b;  
    }  
    return sum;  
}  
 
int main()  
{  
    int a[10]={1, -2, 3, 10, -4, 7, 2, -5};  
    //int a[]={-1,-2,-3,-4};  //测试全是负数的用例  
    cout<<maxSum(a,8)<<endl;  
    return 0;  
}  
 
/*------------------------------------- 
解释下: 
例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5, 
那么最大的子数组为3, 10, -4, 7, 2, 
因此输出为该子数组的和18。 
 
所有的东西都在以下俩行, 
即: 
b  :  0  1  -1  3  13   9  16  18  13   
sum:  0  1   1  3  13  13  16  18  18 
   
其实算法很简单,当前面的几个数,加起来后,b<0后, 
把b重新赋值,置为下一个元素,b=a[i]。 
当b>sum,则更新sum=b; 
若b<sum,则sum保持原值,不更新。。July、10/31。 
----------------------------------*/ 
//copyright@ July 2010/10/18
//updated,2011.05.25.
#include <iostream.h>

int maxSum(int* a, int n)
{
 int sum=0;
 //其实要处理全是负数的情况,很简单,如稍后下面第3点所见,直接把这句改成:"int sum=a[0]"即可
 //也可以不改,当全是负数的情况,直接返回0,也不见得不行。
 int b=0;
 
 for(int i=0; i<n; i++)
 {
  if(b<0)           //...
   b=a[i];
  else
   b+=a[i];
  if(sum<b)
   sum=b;
 }
 return sum;
}

int main()
{
    int a[10]={1, -2, 3, 10, -4, 7, 2, -5};
 //int a[]={-1,-2,-3,-4};  //测试全是负数的用例
    cout<<maxSum(a,8)<<endl;
    return 0;
}

/*-------------------------------------
解释下:
例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,
那么最大的子数组为3, 10, -4, 7, 2,
因此输出为该子数组的和18。

所有的东西都在以下俩行,
即:
b  :  0  1  -1  3  13   9  16  18  13 
sum:  0  1   1  3  13  13  16  18  18
 
其实算法很简单,当前面的几个数,加起来后,b<0后,
把b重新赋值,置为下一个元素,b=a[i]。
当b>sum,则更新sum=b;
若b<sum,则sum保持原值,不更新。。July、10/31。
----------------------------------*/

      3、不少朋友看到上面的答案之后,认为上述思路2的代码,没有处理全是负数的情况,当全是负数的情况时,我们可以让程序返回0,也可以让其返回最大的那个负数,下面便是前几日重写的,修改后的处理全是负数情况(返回最大的负数)的代码:

view plaincopy to clipboardprint?
//copyright@ July  
//July、updated,2011.05.25。  
#include <iostream.h>  
#define n 4           //多定义了一个变量  
 
int maxsum(int a[n])    
//于此处,你能看到上述思路2代码(指针)的优势  
{  
    int max=a[0];       //全负情况,返回最大数  
    int sum=0;  
    for(int j=0;j<n;j++)  
    {  
        if(sum>=0)     //如果加上某个元素,sum>=0的话,就加  
            sum+=a[j];  
        else     
            sum=a[j];  //如果加上某个元素,sum<0了,就不加  
        if(sum>max)  
            max=sum;  
    }  
    return max;  
}  
 
int main()  
{  
    int a[]={-1,-2,-3,-4};  
    cout<<maxsum(a)<<endl;  
    return 0;  

//copyright@ July
//July、updated,2011.05.25。
#include <iostream.h>
#define n 4           //多定义了一个变量

int maxsum(int a[n]) 
//于此处,你能看到上述思路2代码(指针)的优势
{
    int max=a[0];       //全负情况,返回最大数
    int sum=0;
    for(int j=0;j<n;j++)
    {
        if(sum>=0)     //如果加上某个元素,sum>=0的话,就加
            sum+=a[j];
        else  
            sum=a[j];  //如果加上某个元素,sum<0了,就不加
        if(sum>max)
            max=sum;
    }
    return max;
}

int main()
{
    int a[]={-1,-2,-3,-4};
    cout<<maxsum(a)<<endl;
    return 0;
}

      4、DP解法的具体方程:@ flyinghearts:设sum[i] 为前i个元素中,包含第i个元素且和最大的连续子数组,result 为已找到的子数组中和最大的。对第i+1个元素有两种选择:做为新子数组的第一个元素、放入前面找到的子数组。
sum[i+1] = max(a[i+1], sum[i] + a[i+1])
result = max(result, sum[i])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值