从本质上讲,之所以能够用最大流解决这个问题,关键在于最大流可以求解下面这个函数的最小值:
接下来就分析一下如何用最大流求解上面这个函数的极值。
首先xi一共只有两种选择,那么最终可以按xi的取值将xi划分成两个集合,那么如果xi在值为1的集合里,xj在值为0的集合里,那么就会产生一个代价cij。同时如果xi选择0就会产生一个bi的代价,如果xi选择1就会产生一个ai的代价。
于是构造一个源点S,汇点T做最小割,不妨假设做完最小割之后值为1的xi的集合是和S相连的部分,值为0的xi的集合是和T相连的部分。
由于表达式中有三项,我们用三种割边来分别描述这三项的值。一种是xi选择了1,这样就不能选择0,需要把xi-T这条边割掉,由于xi选择1会产生ai的代价,那么就把这条边的容量设为ai。另一种是xi选择了0,这样就不能选择1,需要把S-xi这条边割掉,由于xi选择0会产生bi的代价,那么就把这条边的容量设为bi。最后一种是xi选择了1,xj选择了0,这样xi和xj不能在同一个集合中,需要把xi-xj这条边割掉,由于xi选择1,xj选择0产生cij的代价,那么就把这条边的容量设为cij。
这样对建好的图做最小割就可以得到上面哪个函数的最小值。
接着我们分析这个题目如何转化成上面这种模型。
首先我们将D的表达式赤裸裸地写出来:
这种形式必然不能看出来和上面那个表达式有什么关系,于是我们继续将其化简:
如果令f等于最后一行括号里的内容,那么发生了什么?如果ai选择0会产生sum{bij}(1<=j<=N)的代价,如果ai选择1会产生ci的代价,如果ai选择1且aj选择0就会产生bij的代价。这样就完全转化成了上面的模型,具体的做法就不再重复说明了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAXD 1010
#define MAXM 2004010
#include<iostream>
#define INF 0x7fffffff
using namespace std;
int head[MAXD], e;
int v[MAXM], next[MAXM], flow[MAXM];
int lev[MAXD], q[MAXD], out[MAXD];
void init()
{
e=0;
memset(head,-1,sizeof(head));
}
void add(int x, int y, int z)
{
v[e]=y;
flow[e]=z;
next[e]=head[x];
head[x]=e++;
v[e]=x;
flow[e]=0;
next[e]=head[y];
head[y]=e++;
}
int bfs(int S,int T)
{
int rear = 0;
memset(lev, -1, sizeof(lev));
lev[S] = 0, q[rear ++] = S;
for(int i = 0; i < rear; i ++)
for(int j = head[q[i]]; j != -1; j = next[j])
if(flow[j] && lev[v[j]] == -1)
{
lev[v[j]] = lev[q[i]] + 1, q[rear ++] = v[j];
if(v[j] == T) return 1;
}
return 0;
}
int dfs(int cur, int a, int T)
{
if(cur == T)
return a;
for(int &i = out[cur]; i != -1; i = next[i])
if(flow[i] && lev[v[i]] == lev[cur] + 1)
{
int t = dfs(v[i], min(a, flow[i]),T);
if(t)
{
flow[i] -= t, flow[i ^ 1] += t;
return t;
}
}
return 0;
}
long long dinic(int S,int T)
{
long long ans = 0;
while(bfs(S,T))
{
memcpy(out, head, sizeof(head));
while(int t = dfs(S, INF,T))
ans += t;
}
return ans;
}
int x, a;
int N;
int S = 0, T = N + 1;
long long SUM;
void input()
{
scanf("%d", &N);
init();
S=0;
T=N+1;
SUM = 0;
for(int i = 1; i <= N; i ++)
{
a = 0;
for(int j = 1; j <= N; j ++)
{
scanf("%d", &x), a += x;
add(i, j, x);
}
SUM += a;
add(S, i, a);
}
for(int i = 1; i <= N; i ++)
{
scanf("%d", &x);
add(i, T, x);
}
cout<<SUM-dinic(S,T)<<endl;
}
int main()
{
int t;
scanf("%d", &t);
while(t --)
{
input();
}
return 0;
}