计算方法之QR分解(附源程序)

本文介绍了QR分解的概念,它将矩阵A分解为正交矩阵Q和上三角形矩阵R。QR分解是求解线性方程组的有效方法,包括Givens变换和Householder变换两种策略。通过实例展示了使用这两种变换计算75页2.4题的结果,验证了解的正确性。
摘要由CSDN通过智能技术生成

算法定义:设A∈(m≥n),若存在正交阵Q∈和从第n+1行到m行均是零元素的上梯形矩阵R∈,使得A=QR,则称QR为矩阵A的QR分解。

QR(正交三角)分解法是目前求一般矩阵全部特征值的最有效并广泛应用的方法,它是将矩阵分解成一个正规正交矩阵Q与上三角形矩阵R,所以称为QR分解法。QR分解法解线性方程组有两种方法:Givens变换和Householder变换。Givens变换是基于向量旋转,借助于Givens变换矩阵P,对矩阵A的列向量进行旋转,将A矩阵一步步变为R矩阵。Householder变换是基于向量的反射,通过初等反射阵H,对矩阵A的列向量进行旋转,将A一步步变为R矩阵。

计算书中75页的2.4题,依次输入要求的参数,通过Givens变换和Householder变换计算得最后结果,x全为1,满足计算要求。

A=[5 4 7 5 6 7 5;

     4 12 8 7 8 8 6;

     7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值