算法定义:设A∈(m≥n),若存在正交阵Q∈和从第n+1行到m行均是零元素的上梯形矩阵R∈,使得A=QR,则称QR为矩阵A的QR分解。
QR(正交三角)分解法是目前求一般矩阵全部特征值的最有效并广泛应用的方法,它是将矩阵分解成一个正规正交矩阵Q与上三角形矩阵R,所以称为QR分解法。QR分解法解线性方程组有两种方法:Givens变换和Householder变换。Givens变换是基于向量旋转,借助于Givens变换矩阵P,对矩阵A的列向量进行旋转,将A矩阵一步步变为R矩阵。Householder变换是基于向量的反射,通过初等反射阵H,对矩阵A的列向量进行旋转,将A一步步变为R矩阵。
计算书中75页的2.4题,依次输入要求的参数,通过Givens变换和Householder变换计算得最后结果,x全为1,满足计算要求。
A=[5 4 7 5 6 7 5;
4 12 8 7 8 8 6;
7