- 博客(3)
- 资源 (1)
- 收藏
- 关注
原创 高斯分布数学性质及推导(二):如何证明高斯分布的边缘概率和条件概率公式
上一讲对高维高斯概率分布N(μ,∑)\mathcal{N}(\mu,\sum)N(μ,∑)在定义域上积分为1进行了证明,这一讲来推导高斯分布的边缘概率和条件概率公式。推导过程与PRML一书类似,但对细节进行了展开介绍。随后介绍如何利用高斯随机变量的线性组合公式进行推导。高维高斯分布N(μ,∑)\mathcal{N}(\mu,\sum)N(μ,∑)的具体公式可写为:N(μ,∑)=1(2π)N2∣∑...
2020-09-01 11:13:05 3708 2
原创 高斯分布数学性质及推导(一):如何证明高斯分布的积分为1
高斯分布是概率统计和机器学习中最常用到的分布之一,在数学上经常被记为N(μ,∑)\mathcal{N}(\mu, \sum)N(μ,∑),其中μ\muμ为均值,∑\sum∑是协方差矩阵。高维高斯分布的具体形式如下:N(μ,∑)=1(2π)D2∣∑∣12e−12(x−μ)T∑−1(x−μ), (1)\mathcal{N}(\mu...
2020-02-05 17:49:26 9848 1
原创 PCA的n种推导方式
PCA的推导Principal component analysis (PCA) 算法的目标是求解将数据投影到低维空间的主向量,使得数据在主方向上的投影更好地保持原始数据的统计特征,如方差。数据:在机器学习中,数据通常表达为N维实数空间中的一个集合,记为 X={x1,x2,...,xn}∈RNX = \{x_1,x_2,...,x_n\} \in R^NX={x1,x2,...,xn}...
2020-02-04 14:47:26 809
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人