二分查找及其相关算法的java实现

二分查找

总结:

1. 当要查找第一次出现的数(最左),mid下取整;
2. 当要查找最后一次出现的数(最右),mid上取整;

相关算法1:找一个数,如果有,返回任意一个(返回true),否则返回false

/**
     * 找一个数,如果有,返回任意一个(返回true),否则返回false
     * @param data
     * @param k
     */
    public static boolean BinarySearch1(int[] data, int k) {
        // TODO Auto-generated method stub
        int l = 0, r = data.length - 1;
        while(l <= r)
        {
            int mid = l + (r - l) / 2;  //下取整
            if(data[mid] == k){
                //return k;
                return true;
            }else if(data[mid] > k){
                r = mid - 1;
            }else {
                l = mid + 1;
            }
        }
        return false;
    }

相关算法2: (leetcode之first bad version) k第一次出现的位置

public static int FirstBadVersion(int n){
        int start = 1;
        int end = n;
        while(start < end){
            int mid = start + (end -start) / 2;
            if(!isBadVersion(mid)) start = mid + 1;
            else end = mid;
        }
        return start;
    }

相关算法3:k最后一次出现的位置,没有返回-1

/**
     * k最后一次出现的位置,没有返回-1
     * @param data
     * @param k
     * @return
     */
    private static int BinarySearch2(int[] data, int k) {
        // TODO Auto-generated method stub
        int l = 0, r = data.length - 1;
        while(l < r){
            int mid = l + (r - l + 1) / 2;  //上取整,否则会死循环
            if(data[mid] == k)
            {
                l = mid;
            }else if(data[mid] > k){
                r = mid - 1;
            }else{
                l = mid + 1;
            }
        }
        if(l == r && data[l] == k){
            return l;
        }else{
            return -1;
        }
    }

相关算法4:查找小于k的最大的数

    /**
     * 查找小于k的最大的数
     * @param data
     * @param k
     * @return
     */
    private static int BinarySearch3(int[] data, int k) {
        // TODO Auto-generated method stub
        int l = 0, r = data.length - 1;
        while(l < r){
            int mid = l + (r - l + 1) / 2;  //{k,k}用两个数来判断,不加1的话(mid = l & l = mid)会死循环
            if(data[mid] >= k)
            {
                r = mid - 1;
            }else {
                l = mid;
            }
        }
        if(l == r && data[l] < k){
            return l;
        }else{
            return -1;
        }
    }

相关算法5:统计一个数字在排序数组中出现的次数—k最后一次出现的(算法2)-k第一次出现 (算法3)+ 1

public int GetNumberOfK(int [] array , int k) {
        if(array == null || array.length <= 0)
            return 0;
        int first = getFirstK(array, k);
        int last = getLastK(array, k);
        if(first > -1 && last > -1)
            return last - first + 1;
        else 
            return 0;
    }

    //找k第一次出现的下标
    public int getFirstK(int [] nums, int k){
        int begin = 0, end = nums.length - 1;
        while(begin < end){
            int mid = begin + (end - begin) / 2; //下取整
            if(nums[mid] == k)
                end = mid;
            else if(nums[mid] > k)
                end = mid - 1;
            else
                begin = mid + 1;
        }
        if(nums[begin] == k)
            return begin;
        else
            return -1;   //没找到
    }

    //找最后一次出现的下标
    public int getLastK(int [] nums, int k){
        int begin = 0, end = nums.length - 1;
        while(begin < end){
            int mid = begin + (end - begin + 1) / 2;//上取整,否则会死循环
            if(nums[mid] == k)
                begin = mid;
            else if(nums[mid] < k)
                begin = mid + 1;
            else
                end = mid - 1;
        }
        if(nums[end] == k)
            return end;
        else
            return -1;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值