Painter:使用视觉提示来引导网络推理

论文介绍了一种新的方法Painter,它通过将计算机视觉任务的输出和提示定义为图像,简化了In-contextLearning中的问题。Painter展示了在多个视觉任务上的卓越性能,且提供了易于使用的简化代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 论文

在这里插入图片描述
paper:Images Speak in Images: A Generalist Painter for In-Context Visual Learning
github:https://github.com/baaivision/Painter

2. 示意图

在这里插入图片描述

3. 主要贡献

在 In-context Learning 中,作为自然语言处理的一种新范式,使模型能够仅凭少数提示和示例迅速适应各种任务。但在计算机视觉领域, In-context Learning 的难点在于任务的输出表示方式差异很大,因此不清楚如何定义通用任务提示,以便视觉模型能够理解并应用到领域外的任务。在这项工作中 Painter 将核心视觉任务的输出重新定义为图像,并将任务提示也指定为图像。基于这个想法,训练过程非常简单,即对输入和输出图像对的组合执行标准的遮蔽图像建模。这使得模型能够执行基于可见图像补丁的任务。因此,在推断过程中,可以采用来自相同任务的一对输入和输出图像作为输入条件,以指示要执行哪个任务。没有那些花里胡哨的 trick,Painter在七个代表性的视觉任务上表现出与成熟的任务特定模型相媲美的性能,这些任务涵盖了从高级视觉理解到低级图像处理的各种领域。此外,Painter在几项具有挑战性的任务上明显优于最近的通用模型。

4. 代码简化

由于原项目的代码比较繁琐,对于各种不同的数据集有比较复杂的加载方式,我对他们的代码进行简化,从而令初学者能够快速利用自己的任务或者图像进行测试,需要注意的是这里我删除了关于训练的代码。链接:Painter:使用视觉提示visual prompt来引导网络推理超精简代码。以下是简化前后的代码结构对比。
简化前的代码结构:
在这里插入图片描述
简化后的代码结构:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听 风、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值