【数据结构】时间复杂度和空间复杂度

文章详细介绍了时间复杂度的概念,通过计算示例展示了如何分析和简化算法的时间复杂度,包括大O的渐进表示法。同时,提到了常见的时间复杂度计算,如冒泡排序、二分查找、递归和斐波那契数列,并给出了空间复杂度的计算例子,强调了空间复杂度在算法分析中的重要性。
摘要由CSDN通过智能技术生成

在这里插入图片描述

👦个人主页:@Weraphael
✍🏻作者简介:目前学习C++和算法ing
✈️专栏:【数据结构】
🐋 希望大家多多支持,咱一起进步!😁
如果文章对你有帮助的话
欢迎 评论💬 点赞👍🏻 收藏 📂 加关注


一、时间复杂度的概念

  • 算法的时间复杂度是一个函数式,它定量描述了该算法的运行时间
  • 算法中的基本操作的执行次数,为算法的时间复杂度。即找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

二、时间复杂度的计算

2.1 例题

void Func(int N)
{
	int count = 0;
	for (int i = 0; i < N; i++)
	{
		for (int j = 0; j < N; j++)
		{
			count++;
		}
	}
	for (int k = 0; k < 2 * N; k++)
	{
		count++;
	}

	int M = 10;
	while (M--)
	{
		count++;
	}
}

【分析】
在这里插入图片描述

通过分析,不难可以写出时间复杂度的函数式:

在这里插入图片描述

当N = 10时,F(N) = 130
当N = 100时,F(N) = 10210
当N = 1000时,F(N) = 1002010

实际中我们计算时间复杂度时,其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这
里就引入大O的渐进表示法

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号

推导大O阶方法

  1. 用常数1取代运行时间中的所有加法常数,记作:O(1)
  2. 只保留最高阶项。假设一个函数式为F(N) = N2 + N,记作:O(N2)
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。假设一个函数式为F(N) =2N,记作O(N)

总结:
大O的渐进表示法就是去掉了对结果影响不大的项,简洁明了的表示出了执行次数

另外有些算法的时间复杂度存在最好、平均和最坏情况

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x
最好情况:1次就能找到
平均情况:N / 2次找到
最坏情况:需要遍历数组,也就是N次
但在实际中,一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

【解析2.1例题代码】

使用大O的渐进表示法,只保留最高阶项,所以,时间复杂度为O(N * N)

三、常见时间复杂度计算举例

3.1 实例1

void Func(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; k++)
	{
		count++;
	}
	int M = 10;
	while (M--)
	{
		count++;
	}
	printf("%d\n", count);
}

【解析】

在这里插入图片描述

通过分析,不难可以写出时间复杂度的函数式:

在这里插入图片描述

只保留最高阶项以及如果最高阶项存在且不是1,则去除与这个项目相乘的常数。所以,这题的时间复杂度:O(N)

3.2 实例2

void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; k++)
	{
		count++;
	}
	for (int k = 0; k < N; ++k)
	{
		count++;
	}
	printf("%d\n", count);
}

【分析】

在这里插入图片描述

通过分析,不难可以写出时间复杂度的函数式:

在这里插入图片描述

由于有两个未知数M和N,则时间复杂度只能为O(M + N)
若题目有明确规定,可以分成三种情况:

  • 当M >> N时,则时间复杂度为O(M)
  • 当M << N时,则时间复杂度为O(N)
  • 当M = N时,则时间复杂度为O(N)或者O(M)

3.3 实例3

void Func(int N)
{
	int count = 0;
	for (int k = 0; k < 100; k++)
	{
		count++;
	}
	printf("%d\n", count);
}

【分析】

在这里插入图片描述

用常数1取代运行时间中的所有加法常数,所以此题的时间复杂度为O(1)

3.4 实例4

char* strchr(const char* str, char c)
{
	while (*str)
	{
		if (*str == c)
		{
			return str;
		}
		str++;
	}
}
//打印指定字字符后面的字符串(包括指定字符)
int main()
{

	char t;
	char a[] = "abcdef";
	scanf("%c",&t);
	char* res = strchr(a,t);
	printf("%s\n",res);
	return 0;
}

【分析】

代码逻辑相当于字符查找,运气最好执行1次,最坏N次,然而时间复杂度一般看最坏情况,时间复杂度为 O(N)

3.5 实例5 — 冒泡排序


void Sort(int arr[],int sz)
{
  
	for (int i = 0; i < sz-1; i++)
	{
		for (int j = 0; j < sz - 1 - i; j++)
		{
			if (arr[j] > arr[j + 1])
			{
     
				int tmp = arr[j];
				arr[j] = arr[j + 1];
				arr[j + 1] = tmp;
			}
		}
	}

【分析】

  • 冒泡排序最好情况下:如果元素本来就有序,那么一趟冒泡排序就可以完成排序,也就是N - 1次,因此最好情况的时间复杂度为O(N)
  • 最差情况的时间复杂度:如果数据元素本来就是逆序的,第一个数需要比较N-1次,第二个数需要比较N-2次,第三个数需要比较N-3,…直到比较次数为1次时。这一套下来就是一个等差数列,总共就时N * (N - 1) / 2,因此最差的情况的时间复杂度为O(N2)
  • 综上,时间复杂度一般看最坏,时间复杂度为O(N2)

3.6 实例6 — 二分查找

int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n;
	while (begin < end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid;
		else
			return mid;
	}
	return -1;
}

【分析】

  • 二分查找最好的情况:一次二分就找到了,时间复杂度O(1)
  • 最坏的情况:一直二分,直到二分只剩下一个数,要么找到,要么找不到。假设N表示数组个数
    在这里插入图片描述
    所以,时间复杂度为O(log N)(注:在时间复杂度中,一般log的底数2可以省略不写)

3.7 实例7 — 递归

long long Fac(size_t N)
{
	if(0 == N)
		return 1;
	return Fac(N-1)*N;
}

【分析】

在这里插入图片描述
通过上图计算分析发现,基本操作递归了N + 1次,+1影响不大,因此可以省略。所以时间复杂度为O(N)

3.8 实例8 — 斐波那契数列

long long Fib(size_t N)
{
	if(N < 3)
		return 1;
	return Fib(N-1) + Fib(N-2);
}

【分析】

在这里插入图片描述
通过上图计算分析发现,其递归的次数是一个等比数列的和以及缺少部分的x,F(N) = 2N-1 + X,因此时间复杂度为O(2N

四、空间复杂度

  • 空间复杂度也是一个数学表达式,是对一个算法在运算过程中临时占用存储空间大小的量度。
  • 空间复杂度计算的是变量的个数,所以空间复杂度计算规则和时间复杂度类似,也使用大O渐进表示法。
  • 注意:函数运行时所需要的栈空间在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候申请的额外空间来确定

五、空间复杂度例题

5.1 - 冒泡排序

void BubbleSort(int* a, int n)
{
	for (int end = n; end > 0; end--)
	{
		int flag = 0;
		for (int i = 1; i < end; i++)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				flag = 1;
			}
		}
		if (flag == 0)
		{
			break;
		}
	}
}

解析:

在这里插入图片描述
在上图代码中,一共创建了3个变量,所以,空间复杂度为O(1)

5.2 - 斐波那契

typedef long long LL;
#include <stdlib.h>
LL* Fib(int n)
{
	if (n == 0)
		return 0;
	
	LL* FibArray = (LL*)malloc(sizeof(LL) * (n + 1));
	FibArray[0] = 0;
	FibArray[1] = 1;

	for (int i = 2; i <= n; i++)
	{
		FibArray[i] = FibArray[i - 1] + FibArray[i - 2];
	}
	return FibArray;
}

解析:

在这里插入图片描述
在上述代码中,向内存申请了n + 1,所以其空间复杂度为O(n)

5.3 - 递归

typedef long long LL;

LL Fac(int n)
{
	if (n == 0)
	{
		return 1;
	}

	return Fac(n - 1) * n;
}

解析:
在这里插入图片描述
如上述代码中,递归一共向内存申请了n - 1个空间,所以,空间复杂度为O(n)

5.4 斐波那契

long long Fib(size_t N)
{
	if(N < 3)
		return 1;
	return Fib(N-1) + Fib(N-2);
}

解析:
在这里插入图片描述
以左半边为例,当n < 3时,递推停止,所以从Fib(0)开始回归。在回归的过程中,Fib(0)就会销毁,接着回归到Fib(2),然而Fib(2)又会调用Fib(1),销毁后又回到Fib(2)。所以,Fib(1)和Fib(2)相当于共用的是同一块空间。细推的话整个过程其实开辟了n + 1个空间。所以空间复杂度为O(n)

四、总结

常见复杂度所耗费的时间从小到大依次是:
O(1)
O(logN)
O(N)
O(NlogN)
O(N2)
O(N3)
O(2N)

在这里插入图片描述
在这里插入图片描述

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值