👦个人主页:@Weraphael
✍🏻作者简介:目前学习C++和算法
✈️专栏:C++航路
🐋 希望大家多多支持,咱一起进步!😁
如果文章对你有帮助的话
欢迎 评论💬 点赞👍🏻 收藏 📂 加关注✨
目录
一、红黑树的概念
- 红黑树是除
AVL-tree
之外,另一个被广泛运用的平衡二叉搜索树。 - 红黑树比
AVL-tree
还牛逼。这是因为AVL-tree
需要严格遵守平衡因子不超过1
的规则;而红黑树是 通过颜色(红/黑)的限制,来达到最长路径不超过最短路径的2
倍,因此并不是严格的平衡,而是近似平衡。
二、红黑树的规则总结
- 每个结点不是红色就是黑色。
- 根节点必须是黑色的。
- 如果一个节点是红色的,那么它的孩子结点必须是黑色的(说明任何路径不可能存在连续的红色结点)
- 每条路径上黑色结点的数量相等。(路径是由根结点到空结点)
- 每个空结点
NIL
都是黑色的。
根据以上规则,一颗红黑树就诞生了
上图中,红黑树的路径有11
条!
三、红黑树的定义
红黑树和AVL-tree
都是一个三叉链结构,只是控制平衡的方式不同,红黑树是通过颜色来控制的
四、新增结点颜色的选择
在红黑树中,新增的默认结点颜色可以选择红色,也可以选择黑色。但是,建议选择红色。
接下来分析为什么选择红色。
首先在红黑树规则中,最重要的只有两条:
- 如果一个节点是红色的,那么它的孩子结点必须是黑色的(说明任何路径不可能存在连续的红色结点)
- 每条路径上黑色结点的数量相等。
如果为新增结点默认为黑色,必然违反每条路径的黑色结点数量相同,并且同时因为这一条路,导致其他路径的黑色结点数量不同,这需要对现有的红黑树进行更多的旋转和重新着色操作,从而导致更大的改动,增加了调整平衡的复杂度。
如果为新增结点默认为红色,可能违反如果一个节点是红色的,它的孩子结点必须是黑色的,那么需要进行适当调整。当然也可能不需要调整。
因此,为了尽可能少地改变树的结构,让新结点默认为红色,插入后,不一定调整,但即使调整,也不至于影响全局。
五、插入分析及代码实现
5.1 前言
RB-tree
的平衡条件虽然不同于AVL-tree
,但同样运用了单旋转和双旋转来调节平衡。
为了方便讨论,可以为某些特殊结点[取别名]
-
插入的新结点为
cur
-
新结点的父结点为
parent
-
新结点的祖父结点为(父结点的父亲)
grandparent
-
叔叔结点(父结点的兄弟结点)为
uncle
通常情况下,我们会 特别关注叔叔结点。具体来说会有以下三种情况:
5.2 uncle存在且为红
当cur插在parent的左边时
【解决方法】 变色 + 继续向上更新看是否需要调整。
-
【变色】
parent
(父亲结点一定要为黑色)和uncle
变黑,grandparent
变红。因此在grandparent
子树中,变黑是解决当前路径出现连续的红色结点,变红是保证每条路径的黑色结点个数相同。 -
【继续向上调整】 解决整个树可能出现连续红结点情况(三种):
① 如果grandparent
没有父亲,将grandparent
变黑即可。(保证根的颜色是黑的)
② 如果grandparent
有父亲,且父亲是黑色的,那么不用调整。
③ 如果grandparent
有父亲,且父亲是红色的,就要向上进行调整,因为不能出现连续的红色结点。
比如说以下这种:
此时uncle
为红色,并且cur
插在parent
的右边。虽然插入位置不同,但解决方法还是一样的。
当cur插在parent的右边时
【解决方法】变色 + 继续向上更新看是否需要调整。详细细节可以看看上面的解释说明
【上图的修改】
【总结】
- 当
uncle
存在且为红,并且无论cur
、parent
和uncle
在左在右。解决方法都是:
- 先将
parent
和uncle
变黑,再将grandparent
变红- 然后再继续向上调整
- 如果
grandparent
有父亲且为黑,则无需向上调整- 如果
grandparent
没有父亲,则grandparent
变黑- 如果
grandparent
有父亲且为红,继续向上调整
5.3 当uncle不存在
当uncle不存在于grandparent的右边时
解决方法:旋转 + 变色。
【旋转】 什么旋转是根据cur
插入的位置来定的。如果插入在parent
的左边,那么就要以grandparent
结点进行右单旋;如果插入在parent
的右边,就要进行双旋,先左单旋,最后再右单旋。
【变色】:parent
变黑,grandparent
变红。
当uncle不存在于grandparent的左边时
【解决方法】旋转 + 变色
接下来再基于uncle
不存在时,看看 【双旋】 是怎么个事:当uncle
不存在于grandparent
的左边时
解决方法同样是变色
- 【双旋】:我们在上面说过,对于
uncle
不存在于grandparent
的左边这种情况,并且cur
插入在parent
的左侧,那么就要进行双旋。首先先对parent
进行右单旋;再对grandparent
进行左单旋。
- 【变色】:将
cur
变黑,grandparent
变红
当然了,对于对于uncle
不存在于grandparent
的右边这种情况,并且cur
插入在parent
的右侧。这种调整的解决方法同样是双旋 + 变色
。双旋是先对于parent
左旋转,再对grandparent
右旋,最后再将cur
变黑以及grandparent
变红。由于演示的样例过多,这里就不再演示了hh
【总结】
- 不管
uncle
不存在于grandparent
的左边或者右边,其解决方法都是旋转 + 变色。而什么旋转是根据
cur
插入的位置来定的。
- 如果插入在
parent
的左边,那么就要以grandparent
结点进行右单旋。然后将parent
变成黑色,grandparent
变为红色- 如果插入在
parent
的右边,就要进行双旋,先左单旋,最后再右单旋。然后将cur
变成黑色(旋转后cur
变为根了,根一定为黑),grandparent
变为红色
5.4 uncle存在且为黑
来看看一下这种情况
首先我们需要处理uncle
存在且为红的情况,解决方法很简单:parent
+ uncle
变黑 + grandparent
变红 + 继续向上更新
继续向上更新时,就出现了uncle
存在且为黑的情况
解决方法:旋转 + 变色(parent
变黑、grandparents
变红)
我们发现:uncle
存在且为黑的情况好像和uncle
不存在的解决方法是一模一样的,因此我们可以将其归为一类。
六、代码实现
6.1 插入操作
6.2 左旋和右旋代码
- 至于旋转代码的讲解可以参考
AVL
树的博客:点击跳转。
七、验证红黑树
注意:不能使用最长路径(高度)不能超过最短路径的2
倍来验证,因为你写的程序有可能会破坏红黑树的规则,比如说你写的红黑树可能会出现连续的红色结点,可能会出现最长路径不会超过最短路径的2
倍。我们这里使用红黑树的规则来进行检查。
// backnumber - 用于统计黑色结点的数量
// benchmark - 基准值。此变量是为了求出一条路径的黑色结点个数作为基准值
bool CheckColour(Node* root, int blacknums, int benchmark)
{
if (root == nullptr)
{
// 前序遍历走到空就拿backnumber与基准值benchmark比较即可
if (blacknums != benchmark)
{
return false;
}
return true;
}
// 2. 每条路径的黑色结点数量相等
if (root->_col == BLACK) // 遇到黑结点backnumber自增1
{
++blacknums;
}
// 2. 不可能出现连续的红结点
// 检查当前结点的颜色和其父亲结点的颜色即可
if (root->_col == RED && root->_parent && root->_parent->_col == RED)
{
cout << root->_key.first << "连续红色结点" << endl;
return false;
}
// 递归检查左子树和右子树
return CheckColour(root->_left, blacknums, benchmark)
&& CheckColour(root->_right, blacknums, benchmark);
}
bool _IsBalance(Node* root)
{
// 根结点为空也算红黑树
if (root == nullptr)
{
return true;
}
// 1. 每个结点不是红色就是黑色。(这个不需要验证)
// 2. 根节点必须是黑色的。
if (root->_col != BLACK)
{
return false;
}
// 求出某一路径的黑色结点个数
int benchmark = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
{
++benchmark;
}
cur = cur->_left;
}
// 3. 颜色的检查
return CheckColour(root, 0, benchmark);
}
八、红黑树与AVL树的比较
红黑树和AVL
树都是自平衡的二叉搜索树,它们在维护树的平衡性方面有些不同,因此在不同的应用场景下会有不同的性能表现。
-
平衡性:
AVL
树:AVL
树通过保持任意节点的左右子树高度之差不超过1
来维护平衡。(严格平衡)- 红黑树:红黑树通过保持以五个性质来维护平衡。(近似平衡)
-
插入和删除操作:
-
AVL
树:AVL
树在进行插入和删除操作时,也会通过旋转来调整树的结构并保持平衡。但相比红黑树,AVL
树对平衡的要求更加严格,可能需要进行更多的旋转操作。这使得插入和删除操作的时间复杂度略高于红黑树,为O(log n)
。 -
红黑树:红黑树在进行插入和删除操作时,只需通过旋转和颜色变换来调整树的结构并保持平衡。这些操作的时间复杂度为
O(log n)
,其中n
是树的节点数量。
-
-
查询操作:
- 红黑树和
AVL
树在查询操作上具有相同的时间复杂度,都为O(log n)
。这是因为它们都是二叉搜索树,具有相似的查找性能。
- 红黑树和
-
存储空间:
- 红黑树:红黑树通过颜色标记来维护平衡,需要额外存储每个节点的颜色信息,因此在空间上稍微占用更多的内存。
- AVL树:AVL树不需要额外的信息来维护平衡,因此在空间上相对较小。
综上所述:红黑树和AVL
树都是高效的平衡二叉树,增删改查的时间复杂度都是O(
l
o
g
2
N
log_2 N
log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2
倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL
树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。
九、代码
本篇博客我放到gitte
仓库了,感兴趣的小伙伴可以自取:点击跳转
对了,关于红黑树的删除操作大家不用担心,因为在面试中一般只会考察插入操作 ~