- 博客(7)
- 收藏
- 关注
原创 学习笔记:XGB算法与SGB算法开发实践
1. SS-XGB/SGB算法是如何炼成的?经典算法到MPC算法需要进行算法改造三部曲,确定保护的数据部分、准备安全原语和改造数据结构和算法。3. 如果Alice有15个特质,Bob有1个特质,如果用SGB和ss-XGB做联合建模,我们是否还会获得额外的 AUC的收益?2. 通常需要前置求交集,SS-XGB/SGB XGB有优势的场景包括提高AUC、合作完成建模以及更多数据->更多价值等。1. 隐语提供的纵向树模型算法实现了XGB的经典功能,采用MPC进行密态计算,无信息泄漏,可证安全。
2024-06-14 21:21:16 353
原创 学习笔记:广义线性模型(GLM)及其在隐私保护机器学习中的应用**
在隐私保护机器学习领域,利用如隐语这样的框架,可以安全地实施GLM,同时保证数据的安全性和模型的性能。- 实际操作中,应关注数据的预处理(如归一化),优化器的选择,以及模型的训练和评估过程。**主题:广义线性模型(GLM)及其在隐私保护机器学习中的应用****2. 隐语模型 - 密态SSLR/SSGLM****1. 背景知识 - GLM应用场景及原理**- **SSGLM参数解析与模型训练:****3. 应用实现 - 从理论到隐语应用**- 准备SPU和数据(归一化)。- **隐语实现的优势:**
2024-06-14 21:13:44 681
原创 学习笔记—SecretFlow 的高级概念及其在隐私保护机器学习中的应用
**决策树模型** 和 **线性回归模型**:包括可证明安全的 SS-XGB、SecureBoost 和 SS-SGD 等,以及性能优化的 HESS-SGD 和 SS-GLM。- **神经网络算法**:提供水平联邦学习 (FLModel) 和垂直拆分学习 (SLModel),支持 TensorFlow 和 PyTorch 后端,允许自定义模型和训练参数。- **DataFrame** 和 **FedNdarray**:用于封装联邦表格数据和联邦 ndarray 数据,分别支持不同方式的数据切分。
2024-06-14 21:11:04 762
原创 学习笔记:隐语架构与隐私计算技术
隐语架构提供了一套完整的解决方案,从硬件加速到资源管理,再到算法实现和产品开发,旨在解决数据流通中的隐私保护和安全问题。通过引入不同的技术和工具,隐语能够满足不同用户的需求,促进隐私保护技术的发展和应用。
2024-06-14 20:59:30 382
原创 学习笔记:数据要素流通与隐私计算
数据要素流通带来了新的技术挑战,尤其是在确保数据安全和隐私保护方面。随着技术信任体系的建立和发展,隐私计算技术成为解决这些问题的关键工具。开源项目如隐语在这一过程中扮演着重要角色,不仅提供了强大的技术支持,还促进了行业的标准化和生态建设。
2024-06-14 20:56:50 702
原创 学习笔记之数据可信流通:从运维信任到技术信任
总之,数据可信流通体系是现代数字经济中的重要组成部分,它不仅依赖于先进的技术解决方案,还需要明确的政策指导和严格的监管措施,以确保数据在整个社会中的流动是安全、可靠和高效的。在这节课中,我学到了数据可信流通体系的重要性和实现这一目标所需的技术与政策框架。:随着数据离开原始安全域,传统的安全措施难以应对新的挑战,需要通过技术手段来重建信任链。:采用密码学、可信芯片和机密计算等技术,保障数据在存储、计算和传输过程中的隐私和完整性。:通过建立基于技术信任的数据流通系统,实现数据要素的可信流通,重构技术信任体系。
2024-06-14 20:53:32 252
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人