【第10题】给定 n 和 n 个正整数,输出它们的平均数

本文是C语言学习的第十天打卡内容,主要讲解一道求正整数平均数的题目。通过循环输入n个正整数,计算并输出其平均值,保留两位小数。文章包含解题思路、代码详解,并推荐了相关学习资源。
<think>好的,我现在需要解决的问是根据给定的nk,将1到n的正整数分为能被k整除不能被k整除两类,然后分别计算它们的平均值,精确到小点后一位。让我仔细思考一下这个问应该如何解决。 首先,我需要明确问的具体要求。用户给了一个范围1到n的正整数,要求将这些分成两类:一类是能被k整除的,另一类是不能被k整除的。然后分别计算这两类平均值,保留一位小。这看起来像是一个数学问,但需要转化为编程算法来解决。 接下来,我需要考虑如何高效地分类这些字,计算它们的总量。首先,遍历1到n的所有,判断每个数是否能被k整除。如果能,就加到可被整除的类别中,否则加到另一个类别。同时,需要记录每个类别的总量,以便计算平均值。 那么,如何计算能被k整除的量呢?这里其实有一个数学公式。对于1到n之间能被k整除的,其量可以用n整除k的结果得到,即count1 = n // k。例如,当n=10,k=3时,能被3整除的有3,6,9,共3个,即10//3=3。这个方法是正确的,因为每k个数就会出现一个能被k整除的。 接下来,计算这些的总。能被k整除的形成一个等差列,首项是k,末项是k * count1,公差是k。等差列的公式是:sum = (首项 + 末项) * 项 / 2。所以sum1 = (k + k * count1) * count1 / 2,也就是k*(count1 + 1)*count1 / 2。不过这里可能需要注意,当count1为0时的情况,但实际上当k大于n时,count1为0,这时候这类不存在,所以平均值可能需要特殊处理,比如输出0或者不输出,但目可能保证k<=n,或者需要处理这种情况。 对于不能被k整除的,总共有n - count1个数。它们的总可以用总1到n的减去能被k整除的的总。1到n的是n*(n+1)/2,所以sum2 = total_sum - sum1。然后平均值就是sum2除以(n - count1)。 这样,通过学公式可以直接计算出两类的总量,而不需要逐个遍历每个数,这样可以大大提高效率,尤其是当n非常大的时候,比如n到1e9,这时候遍历每个数会非常慢,而使用学公式可以在O(1)时间内完成计算。 现在需要考虑特殊情况,比如k=1的情况,这时候所有都能被1整除,所以不能被整除的类别量为0,这时候如何处理?目可能需要输出两个平均值,但此时第二个平均值可能没有值,这时候可能需要输出0或者不输出,但根据意,可能目保证k>1?或者需要处理这种情况,比如当量为0时,平均值设为0或者输出“无”等。但目可能要求在这种情况下输出0.0。 接下来,如何将这些逻辑转化为代码?例如,在Python中,输入nk,然后计算count1 = n // k,sum1 = k * count1 * (count1 + 1) // 2。然后sum_total = n*(n+1)//2,sum2 = sum_total - sum1,count2 = n - count1。然后计算平均值,sum1/count1sum2/count2,保留一位小。注意当count1为0时的情况,或者count2为0的情况。 例如,当n=5,k=2时,能被2整除的是24,总是6,量是2,平均3.0。不能被整除的是1,3,5,总9,量3,平均3.0。这时候输出应该是3.03.0。但如果是n=3,k=5,那么能被整除的为0个,这时候如何处理?目可能需要假设输入满足k<=n,或者在代码中处理这种情况,比如当count1为0时,输出0.0或者不输出。但目描述中可能要求输出两个平均值,所以即使其中一个类别没有,也要输出平均值,但此时除以零会出错。因此,必须在代码中处理这种情况,例如当count1为0时,第一个平均值设为0.0,或者无法计算,但根据意,目可能需要保证k<=n,所以当k>n时,能被整除的为0,此时平均值无法计算,但目可能没有说明如何处理。这时候可能需要假设用户输入的k是合法的,即至少有一个数能被整除,或者当类别量为0时,平均值输出为0.0。 此外,输出需要精确到小点后一位,因此需要用浮点的格式化输出。例如,在Python中,可以使用print("{:.1f}".format(average))来实现。 现在,我需要验证这个逻辑的正确性。例如,测试案例: 测试案例1:n=6,k=3。能被3整除的有3,6,总9,量2,平均4.5。不能被整除的有1,2,4,5,总12,量4,平均3.0。所以输出应该是4.53.0。 测试案例2:n=10,k=5。能被整除的5,10,总15,量2,平均7.5。不能被整除的总是55-15=40,量8,平均5.0。输出7.55.0。 测试案例3:n=5,k=1。所有都被整除,总15,量5,平均3.0。不能被整除的量为0,此时如何处理?根据意,可能这时候输出3.00.0,或者第二个平均值不存在。但根据目描述,应该分成两类,所以当count2=0时,输出相应的平均值,但除以零会报错。因此,在代码中必须检查count1count2是否为0,然后处理。 因此,在代码中需要添加判断,当count1=0时,输出0.0,或者当count2=0时,输出0.0。例如: 在计算平均时: 如果count1 ==0,则avg1 = 0.0 否则,avg1 = sum1 / count1 同理,如果count2 ==0,avg2 =0.0,否则 avg2 = sum2 / count2 但目中给出的问描述可能要求将1到n分成两类,所以当k=1时,所有都属于能被整除的一类,而另一类没有,这时候是否应该输出第二类的平均值?比如,目可能要求在这种情况下输出两个平均值,即使其中一个类别的量为0,此时平均数的处理可能需要特别说明。例如,如果某类没有输出0.0或者直接输出“没有”这样的提示,但目可能要求输出个数值,所以在这种情况下可能需要将无的类别输出为0.0。 但学上,如果类别的量为0,则平均值无法计算,所以可能需要根据目要求处理。根据用户给出的问描述,目要求“分别计算它们的平均值”,因此,当某个类别没有时,可能需要处理这种情况,比如返回0.0或者不处理,但用户可能希望在这种情况下仍输出0.0。 因此,在代码中需要处理这两种情况: 例如,在Python中: if count1 ==0: avg1 = 0.0 else: avg1 = sum1 / count1 同样的,对于avg2: if count2 ==0: avg2 =0.0 else: avg2 = sum2 / count2 但这样是否正确?例如,当count1=0时,sum1=0,所以平均是0.0?或者当没有时,平均应该是未定义的,但目可能要求在这种情况下输出0.0。这可能需要根据目要求来定,但用户的问描述中没有明确说明这种情况的处理方式,所以可能需要假设输入的k是合理的,即至少存在一个数能被k整除,或者不能整除的情况存在。例如,当k=1,n>=1时,所有都能被整除,所以不能整除的类别量为0,此时avg2=0.0。 现在,编写代码的大致步骤: 1. 输入nk。 2. 计算count1 = n // k。 3. sum1 = k * count1 * (count1 + 1) // 2。 4. total_sum = n*(n+1)//2. 5. sum2 = total_sum - sum1. 6. count2 = n - count1. 7. 计算avg1avg2,考虑count1或count2为0的情况。 8. 输出两位小,保留一位。 例如,在Python中: n, k = map(int, input().split()) count1 = n // k sum1 = k * count1 * (count1 + 1) // 2 count2 = n - count1 sum2 = n * (n + 1) // 2 - sum1 avg1 = sum1 / count1 if count1 !=0 else 0.0 avg2 = sum2 / count2 if count2 !=0 else 0.0 print("{:.1f} {:.1f}".format(avg1, avg2)) 但这样是否正确?例如,当count1=0时,sum1=0,所以avg1=0.0?比如n=3,k=5,此时count1=0,sum1=0,所以avg1=0.0?这可能符合目的要求,但实际是否有这样的情况需要看目输入的限制。如果目中的k可能大于n,则必须这样处理。 例如,测试案例:n=3,k=5。能被整除的是0个,所以avg1=0.0,不能被整除的是1,2,3,总6,量3,平均2.0。此时输出0.02.0。是否合理?这取决于目是否允许k>n的情况。如果目中的k是正整数,可能允许这种情况,所以代码必须处理这种情况。 另一个测试案例:n=0?但目中给出的是正整数,所以n>=1。因此,输入的nk都是正整数,但k可能大于n。 综上,这个代码逻辑是正确的,能够处理所有可能的情况,包括k>n的情况,其中能被整除的类别量为0,此时平均值为0.0,而另一类别的平均值是正确的。 现在,我需要验证这个逻辑是否正确。例如,当n=5,k=2: count1=5//2=2。能被整除的是24,总6。sum1=2*2*(2+1)/2=2*2*3/2=6。正确。sum_total=5*6/2=15。sum2=15-6=9。count2=5-2=3。avg1=6/2=3.0,avg2=9/3=3.0。输出3.0 3.0,正确。 另一个例子,n=6,k=3: count1=2,sum1=3*(2)(3)/2=3*2*3/2=9?或者原式是k * count1 * (count1 + 1) // 2。count1=6//3=2,sum1=3*2*(2+1)/2=3*2*3/2=9。能被整除的36,总是9,正确。sum_total=21,sum2=21-9=12,count2=4,avg2=12/4=3.0。正确。 当k=1,n=5: count1=5//1=5,sum1=1*5*6/2=15。sum_total=15,sum2=0。count2=0。avg2=0.0。此时输出15/5=3.00.0。这可能是否符合意?目要求分为两类,此时第二类没有,所以平均为0.0。这可能合理,但实际情况中,如果用户输入k=1,那么第二类不存在,但代码仍会输出0.0。这需要根据目要求,但目可能希望此时输出正确的值,比如当没有时,输出0.0。 综上,这个代码逻辑是正确的,能够正确处理各种情况。</think>### 解思路 要将 $1$ 到 $n$ 的正整数分为能被 $k$ 整除不能整除两类,计算它们的平均值,可以通过以下步骤实现: 1. **分类统计** - 能被 $k$ 整除的:总共有 $\lfloor \frac{n}{k} \rfloor$ 个,构成等差列,总为 $S_1 = k \cdot \frac{count_1 (count_1 + 1)}{2}$,其中 $count_1 = \lfloor \frac{n}{k} \rfloor$。 - 不能整除的:总为 $n - count_1$,总为 $S_2 = \frac{n(n+1)}{2} - S_1$。 2. **计算平均值** - 若某类无元素,则平均值为 $0.0$。 - 否则,平均值为总除以量,保留一位小。 --- ### 代码实现 ```python n, k = map(int, input().split()) count1 = n // k sum1 = k * count1 * (count1 + 1) // 2 total = n * (n + 1) // 2 sum2 = total - sum1 count2 = n - count1 avg1 = sum1 / count1 if count1 != 0 else 0.0 avg2 = sum2 / count2 if count2 != 0 else 0.0 print(f"{avg1:.1f} {avg2:.1f}") ``` --- ### 代码解析 | 步骤 | 功能描述 | 学公式 | |--------------------|----------------------------------|-----------------------------| | `count1 = n // k` | 计算能被 $k$ 整除的个数 | $count_1 = \lfloor \frac{n}{k} \rfloor$ | | `sum1 = ...` | 计算能被整除的总 | $S_1 = k \cdot \frac{count_1 (count_1 + 1)}{2}$ | | `sum2 = ...` | 计算不能整除的总 | $S_2 = \frac{n(n+1)}{2} - S_1$ | | `avg1` `avg2` | 计算平均值处理除零情况 | $\text{avg} = \frac{S}{\text{count}}$ | **示例验证** 输入 `n=6, k=3`: 1. 能被 $3$ 整除的:$3, 6$,总 $9$,平均值 $9/2 = 4.5$。 2. 不能整除的:$1,2,4,5$,总 $12$,平均值 $12/4 = 3.0$。 输出:`4.5 3.0`。 --- ### 相关问 1. **如何处理输入中的 $k=0$?** - 目限定 $k$ 为正整数,无需处理此情况[^1]。 2. **如何优化算法的时间复杂度?** - 直接通过公式计算,时间复杂度为 $O(1)$,无需遍历。 3. **若需要同时输出中位,如何修改代码?** - 需遍历所有进行分类,排序后取中间值,时间复杂度增至 $O(n \log n)$[^2]。 [^1]: 正整数定义与输入约束 [^2]: 排序算法的时间复杂度分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

英雄哪里出来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值