夜深人静写算法(二)- 动态规划入门

63 篇文章 313 订阅 ¥999.99 ¥499.90
本文作为《夜深人静写算法》系列的一部分,深入介绍了动态规划的入门知识,包括动态规划的初步探索,如递推、状态和状态转移、最优化原理和最优子结构。通过经典例题,如3xN长方形骨牌铺满问题和01串μ变换,阐述了动态规划的基本思想和状态转移方程的设计。此外,文章还探讨了动态规划的经典模型,如线性模型、区间模型和树状模型,并提供了状态压缩模型的例子。最后,总结了动态规划的常用状态转移方程和题集,帮助读者进一步理解和应用动态规划。
摘要由CSDN通过智能技术生成

一、前言

  目前本专栏正在进行优惠活动,在博主主页添加博主好友,可以获取 付费专栏优惠券
  不知道现在的你是否和我有同样的想法,就是对于一件事情,一直在犹豫到底要不要去做,如果你也有这样一件事情让你一直纠结着,那么我劝你,不要犹豫,立刻果断坚决的执行!因为最后的结果一定只有两个:做或是不做。任何的犹豫都是在浪费你的青春!
  就像我决定重新梳理 《夜深人静写算法》 系列一样,之前纠结了好久要不要重写,因为看到自己以前写的文章,就好像看到刚接触代码的自己,作为程序员,看到自己以前写的代码,只有一个想法,那就是重构!
  幸好这件事情没有让我纠结太久,一旦开始就意味着成功了一半,奔跑吧,少年,让天下没有难学的算法!

二、动态规划初探

1、递推

  • 暂且先不说动态规划是怎么样一个算法,由最简单的递推问题说起应该是最恰当不过得了。
  • 一来,递推的思想非常浅显,从初中开始就已经有涉及,等差数列 f [ i ] = f [ i − 1 ] + d f[i] = f[i-1] + d f[i]=f[i1]+d i > 0 i > 0 i>0 d d d 为公差, f [ 0 ] f[0] f[0] 为初项)就是最简单的递推公式之一;
  • 二来,递推作为动态规划的基本方法,对理解动态规划起着至关重要的作用。理论的开始总是枯燥的,所以让读者提前进入思考是最能引起读者兴趣的利器,于是【例题1】应运而生。

【例题1】在一个 3 × n 3 \times n 3×n 的长方形方格中,铺满 1 × 2 1 \times 2 1×2 的骨牌(骨牌个数不限制),给定 n n n,求方案数(图二 -1-1为 n = 2 n = 2 n=2 的所有方案),所以 n = 2 n = 2 n=2 时方案数为 3 3 3

图二 -1-1

  • 这是一个经典的递推问题,如果觉得无从下手,我们可以来看一个更加简单的问题,把问题中的 “3” 变成 “2”(即在一个 2 × n 2 \times n 2×n 的长方形方格中铺满 1 × 2 1 \times 2 1×2 的骨牌的方案)。这样问题就简单很多了,我们用 f [ i ] f[i] f[i] 表示 2 × i 2 \times i 2×i 的方格铺满骨牌的方案数,那么考虑第 i i i 列,要么竖着放置一个骨牌;要么连同 i − 1 i-1 i1 列,横着放置两个骨牌。
    图二 -1-2
  • 如图二-1-2所示。由于骨牌的长度为 1 × 2 1 \times 2 1×2,所以在第 i i i 列放置的骨牌无法影响到第 i − 2 i-2 i2 列。很显然,图二 -1-2 中两块黑色的部分分别表示 f [ i − 1 ] f[i-1] f[i1] f [ i − 2 ] f[i-2] f[i2],所以可以得到递推式:
    f[0] = f[1] = 1;
    for(int i = 2; i <= n; ++i) {
         f[i] = f[i-1] + f[i-2];   
    }
  • 再回头来看 3 × n 3 \times n 3×n 的情况,首先可以明确当 n n n 等于奇数的时候,方案数一定为 0 0 0
  • 所以如果用 f [ i ] f[i] f[i] ( i i i 为偶数) 表示 3 × i 3 \times i 3×i 的方格铺满骨牌的方案数, f [ i ] f[i] f[i] 的方案数不可能由 f [ i − 1 ] f[i-1] f[i1] 递推而来。那么我们猜想 f [ i ] f[i] f[i] f [ i − 2 ] f[i-2] f[i2] 一定是有关系的,如图二 -1-3所示,我们把第 i i i 列和第 i − 1 i-1 i1 列用 1 × 2 1 \times 2 1×2 的骨牌填满后,轻易转化成了 f [ i − 2 ] f[i-2] f[i2] 的问题,那是不是代表 f [ i ] = 3 ∗ f [ i − 2 ] f[i] = 3 * f[i-2] f[i]=3f[i2] 呢?
    图二 -1-3
  • 仔细想想才发现不对,原因是我们少考虑了图二 -1-4的情况,这些情况用图一 -1-3的情况无法表示,再填充完黑色区域后,发现和 f [ i − 4 ] f[i-4] f[i4] 也有关系,但是还是漏掉了一些情况。
    图二 -1-4
  • 上面的问题说明我们在设计状态时候的思维定式,当一维的状态已经无法满足我们的需求时,我们可以试着增加一维,用二维来表示状态,用 f [ i ] [ j ] f[i][j] f[i][j] 表示 ( 3 × i ) + j (3 \times i) + j (3×i)+j 个多余块的摆放方案数,如图二 -1-5所示:
    图二 -1-5
  • 转化成二维后,我们可以轻易写出三种情况的递推式,具体推导方法见图二 -1-6。
    f[0][0] = f[1][1] = f[0][2] = 1;
    for(int i = 2; i <= n; ++i) {
        f[i][0] = f[i-2][0] + f[i-1][1] + f[i-2][2]; 
        f[i][1] = f[i-1][2];
        f[i][2] = f[i][0] + f[i-1][1];
    }

图二 -1-6
  • 如果 n n n 不是很大的情况,到这一步,我们的问题已经完美解决了,其实并不需要求它的通项公式,因为我们是程序猿,一个 for 循环就能搞定了,接下来的求解就全仰仗于计算机来完成了。

【例题2】对一个 “01” 串进行一次 μ 变换被定义为:将其中的 “0” 变成 “10”,“1” 变成 “01”,初始串为 “1”,求经过 n ( n ≤ 1000 ) n(n \le 1000) n(n1000) 次 μ 变换后的串中有多少对 “00”(有没有人会纠结会不会出现 “000” 的情况?这个请放心,由于问题的特殊性,不会出现 “000” 的情况)。图二 -1-7表示经过小于4次变换时串的情况。

图二 -1-7

  • 如果纯模拟的话,每次 μ 变换串的长度都会加倍,所以时间和空间复杂度都是 O ( 2 n ) O(2^n) O(2n),对于 n = 1000 n = 1000 n=1000 的情况,完全不可能计算出来。仔细观察这个树形结构,可以发现要出现 00,一定是 10 和 01 相邻产生的。为了将问题简化,我们不妨设: A = 10 , B = 01 A = 10, B = 01 A=10,B=01
  • 构造出的树形递推图如图二 -1-8所示,如果要出现 00,一定是 AB(1001)。
    图二 -1-8
  • f [ i ] [ 0 ] f[i][0] f[i][0] 为 A 经过 i 次 μ 变换后 00 的数量,则 f [ 0 ] [ 0 ] = 0 f[0][0] = 0 f[0][0]=0 f [ i ] [ 1 ] f[i][1] f[i][1] 为 B 经过 i i i 次 μ 变换后 00 的数量, f [ 0 ] [ 1 ] = 0 f[0][1] = 0 f[0][1]=0
  • 从图中观察得出,以A为根的树,它的左子树的最右端点一定是B,也就是说无论经过多少次变换,两棵子树的交界处都不可能产生AB,所以有:
  • f [ i ] [ 0 ] = f [ i − 1 ] [ 0 ] + f [ i − 1 ] [ 1 ] f[i][0] = f[i-1][0] + f[i-1][1] f[i][0]=f[i1][0]+f[i1][1]
  • 而以 B 为根的树,它的左子树的右端点一定是A,而右子树的左端点呈BABABA…交替排布,所以隔代产生一次AB,于是 f [ i ] [ 1 ] = f [ i − 1 ] [ 0 ] + f [ i − 1 ] [ 1 ] + ( i   m o d   2 ) f[i][1] = f[i-1][0] + f[i-1][1] + (i \ mod \ 2) f[i][1]=f[i1][0]+f[i1][1]+(i mod 2) 最后要求的答案就是 f [ n − 1 ] [ 1 ] f[n-1][1] f[n1][1],递推求解。
    f[0][0] = f[0][1] = 0;
    for(int i = 1; i <= 1000; i++) {
        f[i][0] = f[i-1][0] + f[i-1][1];
        f[i][1] = f[i-1][0] + f[i-1][1] + (i % 2);
    }

2、状态和状态转移

  • 在介绍递推的时候,涉及到一个词—状态,它表示了解决某一问题的中间结果,这是一个比较抽象的概念,例如【例题1】中的 f [ i ] [ j ] f[i][j] f[i][j],【例题2】中的 f [ i ] [ 0 ] f[i][0] f[i][0] f [ i ] [ 1 ] f[i][1] f[i][1],求解问题的时候,首先要设计出合适的状态,然后通过状态的特征建立状态转移方程( f [ i ] = f [ i − 1 ] + f [ i − 2 ] f[i] = f[i-1] + f[i-2] f[i]=f[i1]+f[i2] 就是一个简单的状态转移方程)。
  • 下文第四节会图解常用的状态转移方程。

3、最优化原理和最优子结构

  • 如果问题的最优解包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。这里我尽力减少理论化的概念,而改用一个简单的例题来加深对这句话的理解。

【例题3】给定一个长度为 n ( 1 < = n < = 1000 ) n(1 <= n <= 1000) n(1<=n<=1000) 的整数序列 a [ i ] a[i] a[i],求它的一个子序列 (子序列即在原序列任意位置删除0或多个元素后的序列),满足如下条件:
1、该序列单调递增;
2、在所有满足条件 1 的序列中长度是最长的;

  • 这个问题是经典的动态规划问题,被称为最长单调子序列。
  • 我们假设现在没有任何动态规划的基础,那么看到这个问题首先想到的是什么?
  • 我想到的是万金油算法—深度优先搜索( D F S DFS DFS ),即枚举 a [ i ] a[i] a[i] 这个元素取或不取,所有取的元素组成一个合法的子序列,枚举的时候需要满足单调递增这个限制,那么对于一个 n n n 个元素的序列,最坏时间复杂度自然就是 O ( 2 n ) O(2^n) O(2n) n = 30 n = 30 n=30 就已经很变态了更别说是 1000 1000 1000
  • 然而,方向是对的,动态规划求解之前先试想一下搜索的正确性,这里搜索的正确性是很显然的,因为已经枚举了所有情况,总有一种情况是我们要求的解。我们尝试将搜索的算法进行一些改进,假设第 i i i 个数取的情况下已经搜索出的最大长度记录在数组中,即用 d [ i ] d[i] d[i] 表示当前搜索到的以 a [ i ] a[i] a[i] 结尾的最长单调子序列的长度,那么如果下次搜索得到的序列长度小于等于 d [ i ] d[i] d[i],就不必往下搜索了(因为即便继续往后枚举,能够得到的解必定不会比之前更长);反之,则需要更新 d [ i ] d[i] d[i] 的值。
  • 如图二-3-1,红色路径表示第一次搜索得到的一个最长子序列1、2、3、5,蓝色路径表示第二次搜索,当枚举第3个元素取的情况时,发现以第3个数结尾的最长长度 d [ 3 ] = 3 d[3] = 3 d[3]=3,比本次枚举的长度要大(本次枚举的长度为2),所以放弃往下枚举,大大减少了搜索的状态空间。
    图二-3-1
  • 这时候,我们其实已经不经意间设计好了状态,就是上文中提到的那个 d [ i ] d[i] d[i] 数组,它表示的是以 a [ i ] a[i] a[i] 结尾的最长单调子序列的长度,那么对于任意的 i i i d [ i ] d[i] d[i] 一定等于 d [ j ] + 1   ( j < i ) d[j] + 1 \ ( j < i ) d[j]+1 (j<i),而且还得满足 a [ j ] < a [ i ] a[j] < a[i] a[j]<a[i]。因为这里的 d [ i ] d[i] d[i] 表示的是最长长度,所以 d [ i ] d[i] d[i] 的表达式可以更加明确,即:
    d [ i ] = m a x ( d [ j ] ∣ j < i , a [ j ] < a [ i ] ) + 1 d[i] = max ( d[j] | j < i, a[j] < a[i] ) + 1 d[i]=max(d[j]j<i,a[j]<a[i])+1
  • 这个表达式很好的阐释了最优化原理,其中 d [ j ] d[j] d[j] 作为 d [ i ] d[i] d[i] 的子问题, d [ i ] d[i] d[i] 最长(优)当且仅当 d [ j ] d[j] d[j] 最长(优)。当然,这个方程就是这个问题的状态转移方程。状态总数量 O ( n ) O(n) O(n), 每次转移需要用到前 i i i 项的结果,平摊下来也是 O ( n ) O(n) O(n) 的, 所以该问题的时间复杂度是 O ( n 2 ) O(n^2) O(n2)

4、决策和无后效性

  • 一个状态演变到另一个状态,往往是通过“决策”来进行的。有了“决策”,就会有状态转移。而无后效性,就是一旦某个状态确定后,它之前的状态无法对它之后的状态产生“效应”(影响)。

【例题4】老王想在未来的 n n n 年内每年都持有电脑, m ( y , z ) m(y, z) m(y,z) 表示第 y y y 年到第 z z z 年的电脑维护费用,其中 y y y 的范围为 [ 1 , n ] [1, n] [1,n] z z z 的范围为 [ y , n ] [y, n] [y,n] c c c 表示买一台新的电脑的固定费用。 给定矩阵 m m m,固定费用 c c c,求在未来 n n n 年都有电脑的最少花费。

  • 考虑第 i i i 年是否要换电脑,换和不换是不一样的决策,那么我们定义一个二元组 ( a , b ) (a, b) (a,b),其中 a < b a < b a<b,它表示了第 a 年和第 b 年都要换电脑(第 a 年和第 b 年之间不再换电脑),如果假设我们到第 a 年为止换电脑的最优方案已经确定,那么第 a 年以前如何换电脑的一些列步骤变得不再重要,因为它并不会影响第 b 年的情况,这就是无后效性。
  • 接下来,会对这题进行一个详细的解释,当然看不懂没关系,可以跳过这个步骤,直接去看 第三章 - 动态规划的经典模型。毕竟,本文是入门级别的,后面还会花更多的时间来讲解动态规划的内容,可以和搜索一起逐步理解状态的概念。
  • 更加具体得,令 d [ i ] d[i] d[i] 表示在第 i 年买了一台电脑的最小花费(由于这台电脑能用多久不确定,所以第 i 年的维护费用暂时不计在这里面),如果上一次更换电脑的时间在第 j 年,那么第 j 年更换电脑到第 i 年之前的总开销就是 c + m ( j , i − 1 ) c + m(j, i-1) c+m(j,i1)
  • 于是有状态转移方程:
    d [ i ] = m i n ( d [ j ] + m ( j , i − 1 ) ∣ 1 < = j < i ) + c d[i] = min( d[j] + m(j, i-1) | 1 <= j < i ) + c d[i]=min(d[j]+m(j,i1)1<=j<i)+c
  • 这里的 d [ i ] d[i] d[i] 并不是最后问题的解,因为它漏算了第 i 年到第 n 年的维护费用,所以最后问题的答案: a n s = m i n ( d [ i ] + m ( i , n ) ∣ 1 < = i < n ) ans = min( d[i] + m(i, n) | 1 <= i < n ) ans=min(d[i]+m(i,n)1<=i<n)
  • 我们发现两个方程看起来很类似,其实是可以合并的,我们可以假设第 n+1 年必须换电脑,并且第 n+1 年换电脑的费用为 0,那么整个阶段的状态转移方程就是: d [ i ] = m i n ( d [ j ] + m ( j , i − 1 ) ∣ 1 < = j < i ) + w ( i ) d[i] = min( d[j] + m(j, i-1) | 1 <= j < i ) + w(i) d[i]=min(d[j]+m(j,i1)1<=j<i)+w(i)
    w ( i ) = { c i < n + 1 0 i = n + 1 w(i) = \begin{cases} c & i < n+1\\ 0 & i=n+1 \end{cases} w(i)={c0i<n+1i=n+1
  • d [ n + 1 ] d[n+1] d[n+1] 就是我们需要求的最小费用了。

三、动态规划的经典模型

  • 本章节作者会通过图的方式,带读者了解一些基本模型,以加深对动态规划状态的理解;
  • 黄色 ■ 代表当前状态;
  • 绿色 ■ 代表子状态(已经求出的状态);
  • 红色 ■ 代表尚未求出的状态;
  • 灰色 ■ 代表永远不存在的状态;

1、线性模型

  • 线性模型是动态规划中最常见的模型,上文讲到的最长单调子序列就是经典的线性模型。
  • 线性模型的状态一般是通过 一维数组表示的,如图三-1-1所示,图中黄色块的状态为 d [ i ] d[i] d[i],绿色块的状态为 d [ j ] d[j] d[j],并且满足 ( j < i ) (j < i) (j<i),只有当 d [ j ] d[j] d[j] 全部计算出来以后, d [ i ] d[i] d[i]的值才能够被确定。
    图三-1-1
  • 线性模型最经典的问题莫过于 背包问题 了,有关背包问题的内容,可以参考以下这篇文章:夜深人静写算法(十九)- 背包总览

2、区间模型

  • 对比线性模型,区间模型状态一般是通过:一个二维数组来表示的
  • 区间模型的状态表示一般为 d [ i ] [ j ] d[i][j] d[i][j],表示区间 [ i , j ] [i, j] [i,j] 上的最优解,最终要求的肯定是 [ 1 , n ] [1, n] [1,n] 的最优解。
  • 如图三-2-1所示,既然是表示区间,所以对于状态 d [ i ] [ j ] d[i][j] d[i][j],当 i > j i>j i>j时,肯定是不合法的状态,所以标记为灰色; d [ i ] [ j ] d[i][j] d[i][j] 表当前状态,标记为黄色;
    图三-2-1
  • 区间模型的详细内容可以参考以下这篇文章:夜深人静写算法(二十七)- 区间DP

3、树状模型

  • 树形动态规划(树形DP),是指状态图是一棵树,状态转移也发生在树上,父结点的状态值通过所有子结点状态值计算完毕后得出,后续会专门开辟一个章节来讲述树形动态规划。
  • 状态表示如图三-3-1所示。
    在这里插入图片描述
    图三-3-1

4、状态压缩模型

  • 状态压缩的含义其实是对状态进行重新编码,来看下面这个例子。
  • 假设状态是一个五维的数组,并且每一维的取值为 [ 0 , 3 ] [0,3] [0,3],状态表示如下:
    d [ a ] [ b ] [ c ] [ d ] [ e ] ( 0 < = a , b , c , d , e < = 3 ) d[a][b][c][d][e] \\ (0 <= a,b,c,d,e <= 3) d[a][b][c][d][e](0<=a,b,c,d,e<=3)
  • 那么,写代码的过程中需要操作五维数组,十分繁琐,我们可以通过将状态压缩,将它重新编码到一个一维数组中。
  • 其实只要能够找到一个映射函数,满足 x x x ( a , b , c , d , e ) (a,b,c,d,e) (a,b,c,d,e) 一一映射,即:
    f ( x ) = ( a , b , c , d , e ) f(x) = (a,b,c,d,e) f(x)=(a,b,c,d,e)
  • 因为每一维的取值为 [ 0 , 3 ] [0,3] [0,3],我们可以把每一维当成是 4进制数的每一位,于是有:
  • x = a × 4 4 + b × 4 3 + c × 4 2 + d × 4 1 + e × 4 0 x = a \times 4^4 + b \times 4^3 + c \times 4^2 + d \times 4^1 + e \times 4^0 x=a×44+b×43+c×42+d×41+e×40
  • 那么,我们只需要用一个一维数组来表示状态即可: d [ x ] d[x] d[x]

四、动态规划的常用状态转移方程

动态规划算法三要素(摘自黑书,总结的很好,很有概括性):
  ①所有不同的子问题组成的表
  ②解决问题的依赖关系可以看成是一个图
  ③填充子问题的顺序(即对②的图进行拓扑排序,填充的过程称为状态转移);

  • 则如果子问题的数目为 O ( n t ) O(n^t) O(nt),每个子问题需要用到 O ( n e ) O(n^e) O(ne) 个子问题的结果,那么我们称它为 tD/eD 的问题,于是可以总结出四类常用的动态规划方程:(下面会把opt作为取最优值的函数(一般取 m i n min min m a x max max ), w ( j , i ) w(j, i) w(j,i)为一个实函数,其它变量都可以在常数时间计算出来)。

1、1D/1D

  • d [ i ] = o p t ( d [ j ] + w ( j , i ) ∣ 0 < = i < j ) d[i] = opt( d[j] + w(j, i) | 0 <= i < j ) d[i]=opt(d[j]+w(j,i)0<=i<j)
  • 状态转移如图四-1-1所示(黄色块代表 d [ i ] d[i] d[i],绿色块代表 d [ j ] d[j] d[j]):
    图四-1-1
  • 这类状态转移方程一般出现在线性模型中。

2、2D/0D

  • d [ i ] [ j ] = o p t ( d [ i − 1 ] [ j ] + x i , d [ i ] [ j − 1 ] + y j , d [ i − 1 ] [ j − 1 ] + z i j ) d[i][j] = opt( d[i-1][j] + x_i, d[i][j-1] + y_j, d[i-1][j-1] + z_{ij} ) d[i][j]=opt(d[i1][j]+xi,d[i][j1]+yj,d[i1][j1]+zij)
  • 状态转移如图四-2-1所示:
    图四-2-1
  • 比较经典的问题是最长公共子序列、最小编辑距离。
  • 有关最长公共子序列的问题,可以参考以下文章:夜深人静写算法(二十一)- 最长公共子序列
  • 有关最小编辑距离的问题,可以参考以下文章:夜深人静写算法(二十二)- 最小编辑距离

3、2D/1D

  • d [ i ] [ j ] = w ( i , j ) + o p t ( d [ i ] [ k − 1 ] + d [ k ] [ j ] ) d[i][j] = w(i, j) + opt( d[i][k-1] + d[k][j] ) d[i][j]=w(i,j)+opt(d[i][k1]+d[k][j])
  • 区间模型常用方程,如图四-3-1所示:
    在这里插入图片描述
    四-3-1
  • 另外一种常用的 2D/1D 的方程为:
  • d [ i ] [ j ] = o p t ( d [ i − 1 ] [ k ] + w ( i , j , k ) ∣ k < j ) d[i][j] = opt( d[i-1][k] + w(i, j, k) | k < j ) d[i][j]=opt(d[i1][k]+w(i,j,k)k<j)

4、2D/2D

  • d [ i ] [ j ] = o p t ( d [ i ′ ] [ j ′ ] + w ( i ′ , j ′ , i , j ) ∣ 0 < = i ′ < i , 0 < = j ′ < j ) d[i][j] = opt( d[i'][j'] + w(i', j', i, j) | 0 <= i' < i, 0 <= j' < j) d[i][j]=opt(d[i][j]+w(i,j,i,j)0<=i<i,0<=j<j)
  • 如图四-4-1所示:
    在这里插入图片描述
    四-4-1
  • 常见于二维的迷宫问题,由于复杂度比较大,所以一般配合数据结构优化,如线段树、树状数组等。
  • 对于一个tD/eD 的动态规划问题,在不经过任何优化的情况下,可以粗略得到一个时间复杂度是 O ( n t + e ) O(n^ {t+e}) O(nt+e),空间复杂度是 O ( n t ) O(n^t) O(nt) 的算法,大多数情况下空间复杂度是很容易优化的,难点在于时间复杂度,后续章节将详细讲解各种情况下的动态规划优化算法。

  • 关于 动态规划入门 的内容到这里就结束了。
  • 如果还有不懂的问题,可以 想方设法 找到作者的微信进行在线咨询。


五、动态规划题集整理

1、递推

题目链接难度解法
Recursion Practice★☆☆☆☆几个初级递推
Put Apple★☆☆☆☆
Tri Tiling★☆☆☆☆【例题1】
Computer Transformation★☆☆☆☆【例题2】
Train Problem II★☆☆☆☆
How Many Trees?★☆☆☆☆
Buy the Ticket★☆☆☆☆
Game of Connections★☆☆☆☆
Count the Trees★☆☆☆☆
Circle★☆☆☆☆
Combinations, Once Again★★☆☆☆
Closing Ceremony of Sunny Cup★★☆☆☆
Rooted Trees Problem★★☆☆☆
Water Treatment Plants★★☆☆☆
One Person★★☆☆☆
Relax! It’s just a game★★☆☆☆
Minimum Heap★★★☆☆
N Knight★★★☆☆
Connected Graph★★★★★楼天城“男人八题”之一

2、记忆化搜索

题目链接难度解法
Function Run Fun★☆☆☆☆
FatMouse and Cheese★☆☆☆☆经典迷宫问题
Cheapest Palindrome★★☆☆☆
A Mini Locomotive★★☆☆☆
Millenium Leapcow★★☆☆☆
Unidirectional TSP★★☆☆☆
Honeycomb Walk★★☆☆☆利用记忆化简化递推
Brackets Sequence★★★☆☆经典记忆化
Chessboard Cutting★★★☆☆《算法艺术和信息学竞赛》例题
Number Cutting Game★★★☆☆

3、最长单调子序列

题目链接难度解法
Constructing Roads In JG Kingdom★★☆☆☆
Stock Exchange★★☆☆☆
Wooden Sticks★★☆☆☆
Bridging signals★★☆☆☆
BUY LOW, BUY LOWER★★☆☆☆要求需要输出方案数
Longest Ordered Subsequence★★☆☆☆
Crossed Matchings★★☆☆☆
Jack’s struggle★★★☆☆稍微做点转化

4、最大M子段和

题目链接难度解法
Max Sum★☆☆☆☆最大子段和
Max Sum Plus Plus★★☆☆☆最大M子段和
To The Max★★☆☆☆最大子矩阵
Max Sequence★★☆☆☆最大2子段和
Maximum sum★★☆☆☆最大2子段和
最大连续子序列★★☆☆☆最大子段和
Largest Rectangle in a Histogram★★☆☆☆最大子矩阵变形
City Game★★☆☆☆最大子矩阵扩展
Matrix Swapping II★★★☆☆最大子矩阵变形后扩展

5、线性模型

题目链接难度解法
Skiing★☆☆☆☆
Super Jumping! Jumping! Jumping!★☆☆☆☆
Milking Time★★☆☆☆区间问题的线性模型
Computers★★☆☆☆【例题4】
Bridge over a rough river★★★☆☆
Crossing River★★★☆☆
Blocks★★★☆☆
Parallel Expectations★★★★☆线性模型黑书案例

6、区间模型

题目链接难度解法
Palindrome★☆☆☆☆
See Palindrome Again★★★☆☆

7、背包问题

题目链接难度解法
饭卡★☆☆☆☆01背包
I NEED A OFFER!★☆☆☆☆概率转化
Bone Collector★☆☆☆☆01背包
最大报销额★☆☆☆☆01背包
Duty Free Shop★★☆☆☆01背包
Robberies★★☆☆☆
Piggy-Bank★☆☆☆☆完全背包
Cash Machine★☆☆☆☆多重背包
Coins★★☆☆☆多重背包,楼天城“男人八题”之一
I love sneakers!★★★☆☆背包变形

8、状态压缩模型

题目链接难度解法
ChessboardProblem★☆☆☆☆比较基础的状态压缩
Number of Locks★☆☆☆☆简单状态压缩问题
Islands and Bridges★★☆☆☆
Tiling a Grid With Dominoes★★☆☆☆骨牌铺方格 4XN的情况
Mondriaan’s Dream★★☆☆☆
Renovation Problem★★☆☆☆简单摆放问题
The Number of set★★☆☆☆
Tetris Comes Back★★☆☆☆纸老虎题
Hardwood floor★★★☆☆
Bugs Integrated, Inc.★★★☆☆三进制状态压缩鼻祖
Another Chocolate Maniac★★★☆☆三进制
Emplacement★★★☆☆类似Bugs那题,三进制
Toy bricks★★★☆☆四进制, 左移运算高于&
Quad Tiling★★★☆☆骨牌铺方格 4XN的情况 利用矩阵优化
Eat the Trees★★★☆☆插头DP入门题
Formula 1★★★☆☆插头DP入门题
The Hive II★★★☆☆插头DP
Plan★★★☆☆插头DP
Manhattan Wiring★★★☆☆插头DP
Pandora adventure★★★★☆插头DP
Tony’s Tour★★★★☆插头DP,楼天城“男人八题”之一
Pipes★★★★☆插头DP
circuits★★★★☆插头DP
Beautiful Meadow★★★★☆插头DP
I-country★★★★☆高维状态表示
Permutaion★★★★☆牛逼的状态表示
01-K Code★★★★☆
Tour in the Castle★★★★★插头DP(难)
The Floor Bricks★★★★★四进制(需要优化)

9、树状模型

题目链接难度解法
Anniversary party★☆☆☆☆树形DP入门
Strategic game★☆☆☆☆树形DP入门
Computer★★☆☆☆
Long Live the Queen★★☆☆☆
最优连通子集★★☆☆☆
Computer Network★★☆☆☆
Rebuilding Roads★★★☆☆树形DP+背包
New Year Bonus Grant★★★☆☆
How Many Paths Are There★★★☆☆
Intermediate Rounds for Multicast★★★★☆
Fire★★★★☆
Walking Race★★★★☆
Tree★★★★★树形DP,楼天城“男人八题”之一

10、滚动数组优化常见问题

题目链接难度解法
Palindrome★☆☆☆☆
Telephone Wire★☆☆☆☆
Gangsters★☆☆☆☆
Dominoes★☆☆☆☆
Cow Exhibition★☆☆☆☆
Supermarket★★☆☆☆

11、决策单调性

题目链接难度解法
Print Article★★★☆☆
Lawrence★★★☆☆
Batch Scheduling★★★☆☆
K-Anonymous Sequence★★★☆☆
Cut the Sequence★★★☆☆
Easy Climb★★★☆☆
MAX Average Problem★★★☆☆

12、常用优化

题目链接难度解法
Divisibility★★☆☆☆利用同余性质
Magic Multiplying Machine★★☆☆☆利用同余性质
Moving Computer★★☆☆☆散列HASH表示状态
Post Office★★★☆☆四边形不等式
Minimizing maximizer★★★☆☆线段树优化
Man Down★★★☆☆线段树优化
So you want to be a 2n-aire?★★★☆☆期望问题
Expected Allowance★★★☆☆期望问题
Pollution★★★☆☆期望问题
Greatest Common Increase Subseq★★★☆☆二维线段树优化
Traversal★★★☆☆树状数组优化
Find the nondecreasing subsequences★★★☆☆树状数组优化
Not Too Convex Hull★★★★☆利用凸包进行状态转移
In Action★★★☆☆最短路+背包
Search of Concatenated Strings★★★☆☆STL bitset 应用
Chopsticks★★★☆☆经典筷子问题

13、其他类型的动态规划

题目链接难度解法
Common Subsequence2D/0D
Advanced Fruits2D/0D
Travel2D/1D
RIPOFF2D/1D
Balls2D/1D
Projects2D/1D
Cow Roller Coaster2D/1D
LITTLE SHOP OF FLOWERS2D/1D
Pearls2D/1D
Spiderman2D/0D
The Triangle2D/0D
Triangles2D/0D
Magazine Delivery3D/0D
Tourist3D/0D
Rectangle2D/1D
Message2D/1D
Bigger is Better2D/1D
Girl Friend II2D/1D
Phalanx2D/1D
Spiderman最坏复杂度O(NK),K最大为1000000,呵呵
Find a path3D/1D 公式简化,N维不能解决的问题试着用N+1维来求解
树形动态规划(Tree DP)是一种解决树状结构问题的算法思想。它利用了树这种特殊的数据结构的性质进行求解,常用来解决树的最优路径、最大值、最小值等类型的问题。 在夜深人静的时候算法,我通常会采用以下步骤来完成树形dp的实现: 第一步是定义状态。我们首先需要确定问题的状态表示方式。对于树形dp来说,常用的状态表示方式是以节点为单位进行表示。我们可以定义dp[i]表示以节点i为根的子树的某种性质,比如最大路径和、最长路径长度等。 第步是确定状态转移方程。根据问题的特点,我们需要找到状态之间的关系,从而确定状态转移方程。在树形dp中,转移方程常常与节点的子节点相关联。我们可以通过遍历节点的子节点,利用它们的状态来更新当前节点的状态,从而得到新的状态。 第三步是确定初始条件。在动态规划中,我们需要确定初始状态的值。对于树形dp来说,我们可以选择将叶节点作为初始状态,然后逐步向上更新,最终得到整棵树的最优解。 第四步是确定计算顺序。树形dp的计算通常是从根节点开始,自顶向下逐步计算,直到达到叶节点。因为树形dp的计算过程中需要利用到子节点的状态来更新当前节点的状态,所以必须按照计算顺序进行。 夜深人静时,算法树形dp是相对较复杂的算法,需要仔细思考问题的状态表示方式,转移方程以及初始条件。在实现过程中,可以采用递归的方式进行代码编,或者利用栈等数据结构进行迭代实现。 总的来说,夜深人静算法树形dp需要耐心和细心,经过思考和实践,才能顺利解决树状结构问题。但是,一旦理解并掌握了树形dp的思想和方法,就能够高效地解决各种树形结构问题,提升算法的效率和准确性。
评论 139
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

英雄哪里出来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值