⭐算法入门⭐《堆》中等03 —— LeetCode 373. 查找和最小的K对数字

一、题目

1、题目描述

  给定两个以升序排列的整数数组nums1nums2, 以及一个整数 k k k 。定义一对值 ( u , v ) (u,v) (u,v),其中第一个元素来自nums1,第二个元素来自nums2。请找到和最小的 k k k 个数对 ( u 1 , v 1 ) (u1,v1) (u1,v1), ( u 2 , v 2 ) (u2,v2) (u2,v2) ( u k , v k ) (uk,vk) (uk,vk)
  样例输入: nums1 = [1,7,11], nums2 = [2,4,6], k = 3
  样例输出: [1,2],[1,4],[1,6]

2、基础框架

  • C语言 版本给出的基础框架代码如下:
int** kSmallestPairs(int* nums1, int nums1Size, int* nums2, int nums2Size, int k, int* returnSize, int** returnColumnSizes){
}

3、原题链接

LeetCode 373. 查找和最小的K对数字
剑指 Offer II 061. 和最小的 k 个数对

二、解题报告

1、思路分析

  堆元素的结构体分别存储的是 两个下标 和 一个求和的值。初始时将 ( 0 , 0 , s u m ) (0, 0, sum) (0,0,sum) 塞入堆中。然后一个一个弹出来,弹出的元素,如果发现重复的需要去重。对于弹出的元素 ( i , j , s u m ) (i, j, sum) (i,j,sum),将 ( i , j + 1 , s u m ) (i, j+1, sum) (i,j+1,sum) ( i , j + 2 , s u m ) (i, j+2, sum) (i,j+2,sum),… 塞入堆中,直到遇到比堆元素小的才结束。再将 ( i + 1 , j , s u m ) (i+1, j, sum) (i+1,j,sum) ( i + 2 , j , s u m ) (i+2, j, sum) (i+2,j,sum),… 塞入堆中,同样操作。当弹出元素达到 k k k 时结束算法。

2、时间复杂度

  堆中元素最多可能有 k 2 k^2 k2 个,所以时间复杂度为 O ( k 2 l o g 2 k ) O(k^2log_2k) O(k2log2k)

3、代码详解


/**********************************小顶堆模板************************************/
#define lson(idx) (idx << 1|1)
#define rson(idx) ((idx + 1) << 1)
#define parent(idx) ((idx - 1) >> 1)
#define root 0

typedef struct {
    int val[2];
    int sum;
}DataType;

// -1 和 1 交换,就变成了大顶堆
int compareData(const DataType* a, const DataType* b) {
    if(a->sum != b->sum) {
        return a->sum < b->sum ? -1 : 1;
    }
    if (a->val[0] != b->val[0]) {
        return a->val[0] < b->val[0] ? -1 : 1;
    }
    if (a->val[1] != b->val[1]) {
        return a->val[1] < b->val[1] ? -1 : 1;
    }
    return 0;
}

void swap(DataType* a, DataType* b) {
    DataType tmp = *a;
    *a = *b;
    *b = tmp;
}

typedef struct {
    DataType *data;
    int size;
    int capacity;
}Heap;

// 内部接口,小写驼峰

// heapShiftDown 这个接口是一个内部接口,所以用小写驼峰区分,用于对堆中元素进行删除的时候的下沉调整;
void heapShiftDown(Heap* heap, int curr) {
    int son = lson(curr);

    while(son < heap->size) {
        if( rson(curr) < heap->size ) {
            if( compareData( &heap->data[rson(curr)], &heap->data[son] ) < 0 ) {
                son = rson(curr);                        // 始终选择值更小的结点
            }        
        }
        if( compareData( &heap->data[son], &heap->data[curr] ) < 0 ) {
            swap(&heap->data[son], &heap->data[curr]);   // 子结点的值小于父结点,则执行交换;
            curr = son;
            son = lson(curr);
        }else {
            break;                                       // 子结点的值大于父结点,说明已经正确归位,下沉操作结束,跳出循环;
        }
    }
}

// heapShiftUp 这个接口是一个内部接口,所以用小写驼峰区分,用于对堆中元素进行插入的时候的上浮调整;
void heapShiftUp(Heap* heap, int curr) {
    int par = parent(curr);
    while(par >= root) {
        if( compareData( &heap->data[curr], &heap->data[par] ) < 0 ) {
            swap(&heap->data[curr], &heap->data[par]);   // 子结点的值小于父结点,则执行交换;
            curr = par;
            par = parent(curr);
        }else {
            break;                                       // 子结点的值大于父结点,说明已经正确归位,上浮操作结束,跳出循环;
        }
    }
}

bool heapIsFull(Heap *heap) {
    return heap->size == heap->capacity;
}

// 外部接口,大写驼峰

// 堆的判空
bool HeapIsEmpty(Heap *heap) {
    return heap->size == 0;
}

// 堆的插入
// 插到最后一个位置,然后不断进行上浮操作
bool HeapPush(Heap* heap, DataType data) {
    if( heapIsFull(heap) ) {
        return false;
    }
    heap->data[ heap->size++ ] = data;
    heapShiftUp(heap, heap->size-1);
    return true;
}


// 堆的删除
// 1、删除堆顶元素时,将堆底部的下标最大的元素放入对顶;
// 2、然后调用 shiftDown 将这个元素进行下沉操作;
// 对于小顶堆来说,从根到叶子的路径必然是单调不降的,所以下沉操作一定会终止在路径的某个点,并且保证所有的堆路径还是能够维持单调不降;
bool HeapPop(Heap *heap) {
    if(HeapIsEmpty(heap)) {
        return false;
    }
    heap->data[root] = heap->data[ --heap->size ];
    heapShiftDown(heap, root);
    return true;
}

DataType HeapTop(Heap *heap) {
    assert(!HeapIsEmpty(heap));
    return heap->data[root];
}

// 创建堆
Heap* HeapCreate(DataType *data, int dataSize, int maxSize) {
    int i;
    Heap *h = (Heap *)malloc( sizeof(Heap) );
    
    h->data = (DataType *)malloc( sizeof(DataType) * maxSize );
    h->size = 0;
    h->capacity = maxSize;

    for(i = 0; i < dataSize; ++i) {
        HeapPush(h, data[i]);
    }
    return h;
}

// 销毁堆
void HeapFree(Heap *heap) {
    free(heap->data);
    free(heap);
}

/**********************************小顶堆模板************************************/

int** kSmallestPairs(int* nums1, int nums1Size, int* nums2, int nums2Size, int k, int* returnSize, int** returnColumnSizes){
    Heap *h = HeapCreate(NULL, 0, 100000);
    DataType d, tmp;
    int l, r, sum;
    int retSize = 0;
    int first;
    int **ret = (int **) malloc( sizeof(int *) * k);              // (1)
    *returnColumnSizes = (int *) malloc( sizeof(int) * k);        // (2)

    d.val[0] = 0;
    d.val[1] = 0;
    d.sum = nums1[0] + nums2[0];
    HeapPush(h, d);                                               // (3)
    
    while(k-- && !HeapIsEmpty(h)) {
        d = HeapTop(h);                                           // (4)
        HeapPop(h);

        while(!HeapIsEmpty(h)) {                                  // (5)
            tmp = HeapTop(h);
            if( compareData(&d, &tmp) == 0 ) {
                HeapPop(h);
            }else break;
        }

        ret[ retSize ] = (int *) malloc( sizeof(int) * 2 );       // (6)
        ret[ retSize ][0] = nums1[ d.val[0] ];
        ret[ retSize ][1] = nums2[ d.val[1] ];
        (*returnColumnSizes)[retSize] = 2;                        // (7)
        retSize++;
        l = d.val[0] + 1;
        r = d.val[1];
        first = 1;
        while(l < nums1Size && r < nums2Size) {                   // (8)
            sum = nums1[l] + nums2[r];
            if( HeapIsEmpty(h) || sum <= HeapTop(h).sum || first ) {
                tmp.val[0] = l;
                tmp.val[1] = r;
                tmp.sum = sum;
                HeapPush(h, tmp);
                ++r;
                first = 0;
            }else break;

        }

        l = d.val[0];
        r = d.val[1] + 1;
        first = 1;
        while(l < nums1Size && r < nums2Size) {                   // (9)
            sum = nums1[l] + nums2[r];
            if( HeapIsEmpty(h) || sum <= HeapTop(h).sum || first ) {
                tmp.val[0] = l;
                tmp.val[1] = r;
                tmp.sum = sum;
                HeapPush(h, tmp);
                ++l;
                first = 0;
            }else break;

        }
        
    }
    *returnSize = retSize;
    HeapFree(h);
    return ret;
}

  • ( 1 ) (1) (1) 申请一个二维数组;
  • ( 2 ) (2) (2) 申请一个一维数组;
  • ( 3 ) (3) (3) 将初始元素塞入堆中;
  • ( 4 ) (4) (4) 弹出一个值最小的元素;
  • ( 5 ) (5) (5) 去重;
  • ( 6 ) (6) (6) 填充结果列表;
  • ( 7 ) (7) (7) 填充结果列表的长度;
  • ( 8 ) (8) (8) 塞入候选解;
  • ( 9 ) (9) (9) 塞入候选解;

三、本题小知识

  堆 的元素可以是结构体,通过修改 比较函数 实现任意结构的堆操作。


四、加群须知

  相信看我文章的大多数都是「 大学生 」,能上大学的都是「 精英 」,那么我们自然要「 精益求精 」,如果你还是「 大一 」,那么太好了,你拥有大把时间,当然你可以选择「 刷剧 」,然而,「 学好算法 」,三年后的你自然「 不能同日而语 」
  那么这里,我整理了「 几十个基础算法 」 的分类,点击开启:

🌌《算法入门指引》🌌

  如果链接被屏蔽,或者有权限问题,可以私聊作者解决。

  大致题集一览:


在这里插入图片描述


  为了让这件事情变得有趣,以及「 照顾初学者 」,目前题目只开放最简单的算法 「 枚举系列 」 (包括:线性枚举、双指针、前缀和、二分枚举、三分枚举),当有 一半成员刷完 「 枚举系列 」 的所有题以后,会开放下个章节,等这套题全部刷完,你还在群里,那么你就会成为「 夜深人静写算法 」专家团 的一员。
  不要小看这个专家团,三年之后,你将会是别人 望尘莫及 的存在。如果要加入,可以联系我,考虑到大家都是学生, 没有「 主要经济来源 」,在你成为神的路上,「 不会索取任何 」
  🔥联系作者,或者扫作者主页二维码加群,加入刷题行列吧🔥


🔥让天下没有难学的算法🔥

C语言免费动漫教程,和我一起打卡!
🌞《光天化日学C语言》🌞

入门级C语言真题汇总
🧡《C语言入门100例》🧡

几张动图学会一种数据结构
🌳《画解数据结构》🌳

组团学习,抱团生长
🌌《算法入门指引》🌌

竞赛选手金典图文教程
💜《夜深人静写算法》💜
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

英雄哪里出来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值