LeetCode 2081. k 镜像数字的和

一、题目

1、题目描述

  一个 k k k 镜像数字 指的是一个在十进制和 k k k 进制下从前往后读和从后往前读都一样的 没有前导 0 的 正 整数。
  比方说, 9 9 9 是一个 2 2 2 镜像数字。 9 9 9 在十进制下为 9 9 9 ,二进制下为 1001 1001 1001,两者从前往后读和从后往前读都一样。
  相反地, 4 4 4 不是一个 2 2 2 镜像数字。 4 4 4 在二进制下为 100 100 100,从前往后和从后往前读不相同。
  给你进制 k k k 和一个数字 n n n,请你返回 k k k 镜像数字中 最小 的 n n n 个数 之和 。
  样例输入: X
  样例输出: X

2、基础框架

  • C语言版本给出的基础框架代码如下:
long long kMirror(int k, int n){

}

3、原题链接

LeetCode 2081. k 镜像数字的和

二、解题报告

1、思路分析

   ( 1 ) (1) (1) 说得这么高端,还镜像,其实就是一个回文数。
   ( 2 ) (2) (2) 要求在十进制下是回文数,并且在 k k k 进制下也是回文数。然后,我们求的是前 n n n 满足条件的数。
   ( 3 ) (3) (3) 对于一个回文数,只需要知道前半部分,后半部分可以通过前半部分来求出来。然后再判断 k k k 进制下是不是一个回文数,如果是,则直接累加到答案即可。

2、时间复杂度

   最坏时间复杂度 O ( 1 0 5 ) O(10^5) O(105)

3、代码详解


// 对于 x = 123,  odd=1   返回  12321
// 对于 x = 123,  odd=0   返回  123321  
long long generatePalin(int x, bool odd) {
    int stk[20], pretop, top = 0;
    int i;
    int tmp;
    long long sum = 0;
    // 各位分解,存入 stk
    while(x) {
        stk[top++] = x % 10;
        x /= 10;
    }
    // 进行逆序
    for(i = 0; i < top/2; ++i) {
        tmp = stk[i];
        stk[i] = stk[top-1-i];
        stk[top-1-i] = tmp;
    }
    pretop = top;
    top = (top << 1) - odd;
    for(i = pretop; i < top; ++i) {
        stk[i] = stk[top-1-i];
    }

    for(i = 0; i < top; ++i) {
        sum = sum * 10 + stk[i];
    }
    return sum;
}

bool isKPalin(long long x, int k) {
    int stk[100], top = 0;
    int i;
    // 各位分解,存入 stk
    while(x) {
        stk[top++] = x % k;
        x /= k;
    }
    for(i = 0; i < top/2; ++i) {
        if(stk[i] != stk[top-1-i]) {
            return false;
        }
    }
    return true;
}

long long kMirror(int k, int n){
    long long ret = 0;
    long long pow10[20], val;
    int l, r;
    int i, j;

    pow10[0] = 1;
    for(i = 1; i < 19; ++i) {
        pow10[i] = pow10[i-1] * 10;
    }

    // 长度为3的回文数,就是 枚举 10 - 99 然后补充右边即可
    // 长度为4的回文数,就是 枚举 10 - 99 然后补充右边即可
    // 长度为5的回文数,就是 枚举 100 - 999 然后补充右边即可
    // 长度为6的回文数,就是 枚举 100 - 999 然后补充右边即可
    // 长度为n的回文数,就是 枚举 pow10[(n+1)/2-1] 到 pow10[(n+1)/2]-1 然后补充右边即可

    for(i = 1; i < 20; ++i) {
        l = pow10[ (i+1)/2 - 1];
        r = pow10[ (i+1)/2 ] - 1;
        for(j = l; j <= r; ++j) {
            val = generatePalin(j, i&1);
            if( isKPalin(val, k) ) {
                ret += val;
                --n;
                if(n == 0) {
                    return ret;
                }
            }
        }
    }

    return -1;
}

三、本题小知识

  回文数的计算,一般都要涉及到奇数偶数性判定,可以分开计算,会清楚许多。


四、加群须知

  相信看我文章的大多数都是「 大学生 」,能上大学的都是「 精英 」,那么我们自然要「 精益求精 」,如果你还是「 大一 」,那么太好了,你拥有大把时间,当然你可以选择「 刷剧 」,然而,「 学好算法 」,三年后的你自然「 不能同日而语 」
  那么这里,我整理了「 几十个基础算法 」 的分类,点击开启:

🌌《算法入门指引》🌌

  如果链接被屏蔽,或者有权限问题,可以私聊作者解决。

  大致题集一览:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述



在这里插入图片描述


  为了让这件事情变得有趣,以及「 照顾初学者 」,目前题目只开放最简单的算法 「 枚举系列 」 (包括:线性枚举、双指针、前缀和、二分枚举、三分枚举),当有 一半成员刷完 「 枚举系列 」 的所有题以后,会开放下个章节,等这套题全部刷完,你还在群里,那么你就会成为「 夜深人静写算法 」专家团 的一员。
  不要小看这个专家团,三年之后,你将会是别人 望尘莫及 的存在。如果要加入,可以联系我,考虑到大家都是学生, 没有「 主要经济来源 」,在你成为神的路上,「 不会索取任何 」
  🔥联系作者,或者扫作者主页二维码加群,加入刷题行列吧🔥


🔥让天下没有难学的算法🔥

C语言免费动漫教程,和我一起打卡!
🌞《光天化日学C语言》🌞

让你养成九天持续刷题的习惯
🔥《九日集训》🔥

入门级C语言真题汇总
🧡《C语言入门100例》🧡

组团学习,抱团生长
🌌《算法零基础100讲》🌌

几张动图学会一种数据结构
🌳《画解数据结构》🌳

竞赛选手金典图文教程
💜《夜深人静写算法》💜
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

英雄哪里出来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值