一、题目
1、题目描述
一个 k k k 镜像数字 指的是一个在十进制和 k k k 进制下从前往后读和从后往前读都一样的 没有前导 0 的 正 整数。
比方说, 9 9 9 是一个 2 2 2 镜像数字。 9 9 9 在十进制下为 9 9 9 ,二进制下为 1001 1001 1001,两者从前往后读和从后往前读都一样。
相反地, 4 4 4 不是一个 2 2 2 镜像数字。 4 4 4 在二进制下为 100 100 100,从前往后和从后往前读不相同。
给你进制 k k k 和一个数字 n n n,请你返回 k k k 镜像数字中 最小 的 n n n 个数 之和 。
样例输入:X
样例输出:X
2、基础框架
- C语言版本给出的基础框架代码如下:
long long kMirror(int k, int n){
}
3、原题链接
二、解题报告
1、思路分析
(
1
)
(1)
(1) 说得这么高端,还镜像,其实就是一个回文数。
(
2
)
(2)
(2) 要求在十进制下是回文数,并且在
k
k
k 进制下也是回文数。然后,我们求的是前
n
n
n 满足条件的数。
(
3
)
(3)
(3) 对于一个回文数,只需要知道前半部分,后半部分可以通过前半部分来求出来。然后再判断
k
k
k 进制下是不是一个回文数,如果是,则直接累加到答案即可。
2、时间复杂度
最坏时间复杂度 O ( 1 0 5 ) O(10^5) O(105) 。
3、代码详解
// 对于 x = 123, odd=1 返回 12321
// 对于 x = 123, odd=0 返回 123321
long long generatePalin(int x, bool odd) {
int stk[20], pretop, top = 0;
int i;
int tmp;
long long sum = 0;
// 各位分解,存入 stk
while(x) {
stk[top++] = x % 10;
x /= 10;
}
// 进行逆序
for(i = 0; i < top/2; ++i) {
tmp = stk[i];
stk[i] = stk[top-1-i];
stk[top-1-i] = tmp;
}
pretop = top;
top = (top << 1) - odd;
for(i = pretop; i < top; ++i) {
stk[i] = stk[top-1-i];
}
for(i = 0; i < top; ++i) {
sum = sum * 10 + stk[i];
}
return sum;
}
bool isKPalin(long long x, int k) {
int stk[100], top = 0;
int i;
// 各位分解,存入 stk
while(x) {
stk[top++] = x % k;
x /= k;
}
for(i = 0; i < top/2; ++i) {
if(stk[i] != stk[top-1-i]) {
return false;
}
}
return true;
}
long long kMirror(int k, int n){
long long ret = 0;
long long pow10[20], val;
int l, r;
int i, j;
pow10[0] = 1;
for(i = 1; i < 19; ++i) {
pow10[i] = pow10[i-1] * 10;
}
// 长度为3的回文数,就是 枚举 10 - 99 然后补充右边即可
// 长度为4的回文数,就是 枚举 10 - 99 然后补充右边即可
// 长度为5的回文数,就是 枚举 100 - 999 然后补充右边即可
// 长度为6的回文数,就是 枚举 100 - 999 然后补充右边即可
// 长度为n的回文数,就是 枚举 pow10[(n+1)/2-1] 到 pow10[(n+1)/2]-1 然后补充右边即可
for(i = 1; i < 20; ++i) {
l = pow10[ (i+1)/2 - 1];
r = pow10[ (i+1)/2 ] - 1;
for(j = l; j <= r; ++j) {
val = generatePalin(j, i&1);
if( isKPalin(val, k) ) {
ret += val;
--n;
if(n == 0) {
return ret;
}
}
}
}
return -1;
}
三、本题小知识
回文数的计算,一般都要涉及到奇数偶数性判定,可以分开计算,会清楚许多。
四、加群须知
相信看我文章的大多数都是「 大学生 」,能上大学的都是「 精英 」,那么我们自然要「 精益求精 」,如果你还是「 大一 」,那么太好了,你拥有大把时间,当然你可以选择「 刷剧 」,然而,「 学好算法 」,三年后的你自然「 不能同日而语 」。
那么这里,我整理了「 几十个基础算法 」 的分类,点击开启:
如果链接被屏蔽,或者有权限问题,可以私聊作者解决。
大致题集一览:
为了让这件事情变得有趣,以及「 照顾初学者 」,目前题目只开放最简单的算法 「 枚举系列 」 (包括:线性枚举、双指针、前缀和、二分枚举、三分枚举),当有 一半成员刷完 「 枚举系列 」 的所有题以后,会开放下个章节,等这套题全部刷完,你还在群里,那么你就会成为「 夜深人静写算法 」专家团 的一员。
不要小看这个专家团,三年之后,你将会是别人 望尘莫及 的存在。如果要加入,可以联系我,考虑到大家都是学生, 没有「 主要经济来源 」,在你成为神的路上,「 不会索取任何 」。
🔥联系作者,或者扫作者主页二维码加群,加入刷题行列吧🔥
🔥让天下没有难学的算法🔥
C语言免费动漫教程,和我一起打卡! 🌞《光天化日学C语言》🌞
让你养成九天持续刷题的习惯 🔥《九日集训》🔥
入门级C语言真题汇总 🧡《C语言入门100例》🧡
组团学习,抱团生长 🌌《算法零基础100讲》🌌
几张动图学会一种数据结构 🌳《画解数据结构》🌳
竞赛选手金典图文教程 💜《夜深人静写算法》💜