304. 二维区域和检索 - 矩阵不可变

本文介绍了如何使用前缀和方法解决计算二维矩阵子矩形内元素总和的问题。矩阵不可变,需要多次高效地调用求和函数。通过预先计算并存储每个元素到矩阵左上角子矩形的和,可以快速计算任意子矩形的总和。
摘要由CSDN通过智能技术生成

给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2)
在这里插入图片描述

上图子矩阵左上角 (row1, col1) = (2, 1) ,右下角(row2, col2) = (4, 3),该子矩形内元素的总和为 8

示例:

给定 matrix = [
  [3, 0, 1, 4, 2],
  [5, 6, 3, 2, 1],
  [1, 2, 0, 1, 5],
  [4, 1, 0, 1, 7],
  [1, 0, 3, 0, 5]
]

sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

提示:

  • 你可以假设矩阵不可变。
  • 会多次调用 sumRegion 方法。
  • 你可以假设 row1 ≤ row2col1 ≤ col2

解答

依然采用前缀和的思路,只是这里需要存储的是二维矩阵形式,对于每个元素matrix[i][j]计算其到矩阵左上角形成的子矩形内所有元素之和。计算子矩形和presum[i][j]时,可以划分出上,左,左上(presum[i-1][j], presum[i][j-1], presum[i-1][j-1])三个子矩形,进行一定运算后几个得出·presum[i][j]`(动态规划)。

class NumMatrix {
   
public:
    NumMatrix(vector<vector<int>>& matrix) {
   
        if(matrix.empty())
            return;
        int rows = matrix.size();
        int cols = matrix[0].size();
        vector<int> temp(cols, 0);
        preSum.resize(rows, temp);
        for(int i = 0; i < rows; i++){
   
            for(int j = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值