给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1)
,右下角为 (row2, col2)
。
上图子矩阵左上角 (row1, col1) = (2, 1)
,右下角(row2, col2) = (4, 3)
,该子矩形内元素的总和为 8
。
示例:
给定 matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
提示:
- 你可以假设矩阵不可变。
- 会多次调用
sumRegion
方法。 - 你可以假设
row1 ≤ row2
且col1 ≤ col2
。
解答
依然采用前缀和的思路,只是这里需要存储的是二维矩阵形式,对于每个元素matrix[i][j]
计算其到矩阵左上角形成的子矩形内所有元素之和。计算子矩形和presum[i][j]
时,可以划分出上,左,左上(presum[i-1][j], presum[i][j-1], presum[i-1][j-1]
)三个子矩形,进行一定运算后几个得出·presum[i][j]`(动态规划)。
class NumMatrix {
public:
NumMatrix(vector<vector<int>>& matrix) {
if(matrix.empty())
return;
int rows = matrix.size();
int cols = matrix[0].size();
vector<int> temp(cols, 0);
preSum.resize(rows, temp);
for(int i = 0; i < rows; i++){
for(int j =