你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。
示例 1:
输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 3:
输入:nums = [0]
输出:0
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
解答
由于首尾相连,因此等价于求解0~nums.size()-2
及1~nums.size()-1
两种情况的最大值:
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.empty())
return 0;
if(nums.size() == 1)
return nums[0];
if(nums.size() == 2)
return max(nums[0], nums[1]);
return max(helper(nums, 0, nums.size() - 1), helper(nums, 1, nums.size()));
}
int helper(vector<int>& nums, int start, int end){
int no_rob_cur = nums[start], rob_cur = max(nums[start], nums[start + 1]);
for(int cur = start + 2; cur < end; cur++){
int temp = rob_cur;
rob_cur = max(rob_cur, no_rob_cur + nums[cur]);
no_rob_cur = temp;
}
return rob_cur;
}
};