导读:洗钱行为破坏金融体系的稳定性与公信力,机密计算技术被证实能够有效识别洗钱行为。其通过保护敏感数据隐私,促进机构间的有效合作,加强反洗钱工作的成效与安全性。
一、从投币式洗衣机说起
洗钱(money laundering),指的是通过各种方式掩饰和隐瞒犯罪所得,及其收益的来源和性质。通常,洗钱被视为金融犯罪的下游环节和关键环节,因为它不仅帮助犯罪分子隐藏其非法收入,还助长了其他犯罪活动的进行。
最早的洗钱行为可以追溯到20世纪初期的美国。黑手党成员阿尔·卡彭利用自动投币式的洗衣店,把巨额非法所得拆分成较小金额,混入日常营业额中正常申报纳税,从而将非法的资金伪装成合法的洗衣店收入。
具体而言,洗钱行为大致可以分为三个环节:安置(转移与犯罪直接相关的资金)、分层(掩盖踪迹以阻止追击)和整合(从看似合法的来源向犯罪分子提供资金)。
尽管涉及洗钱行为的总金额难以准确计算,但据UNODC统计,这个数字约为8000亿至20000亿美元,占全球GDP的2-5%。
二、金融机构与反洗钱
2012年,汇丰银行(HSBC)向美国政府支付了19亿美元的罚款,起因是其为贩毒集团洗钱约8.81亿美元,并且违反美国制裁法律,这一罚款金额创下当时金融机构罚款记录。可见,无论是出于合规还是责任义务的考量,金融机构都必须支持反洗钱(AML)。
以汇丰银行为例,在整改过程中它重组了高级管理层,引入 Stuart Levey(前美国财政部高官)担任首席法律官,将奖金与AML合规挂钩,增设4000名合规和反洗钱专家,并数次改进AML系统,总体投入超过7亿美元。
目前,大多数金融机构更倾向于引入可靠的AML系统代替大部分的人工操作。
Strise,一家专注于通过自动化和人工智能技术改进AML流程的挪威科技公司,其核心产品Strise AML Automation Cloud 被PwC Norway、Nordea、Danske Bank 等多家金融机构采用。客户反馈,部署该系统后调查时间减少了90%,成本降低了30%,并且减少了30%以上的误报率。
三、机密计算对AML系统的增益
3.1 客户生命周期
金融机构引入AML系统,通常主要用于客户生命周期管理。AML系统能够自动合并、清理和更新数据,极大减轻人工输入数据负担。在金融机构与新的客户达成协议时,还能够自动将新的数据合并到已有的数据集里,从而简化工作流程,实现降本增效的目标。
3.2 风险误报率
尽管风险提示的误报率已经在AML系统的帮助下显著降低,但不可避免的误报情况仍然会给普通人造成不小的困扰。容易触发误报的几种情景如下:
-
商店或餐馆经营者将每日的营收取出;
-
用户在不同银行开设账户;
-
用户跨境旅游并频繁发生消费行为;
-
用户定期、频繁往某个账户中转入固定数额资金;
-
用户产生与日常消费水平不符的大额资金交易。
在以上情景中,如果被误判为洗钱行为,账户可能会被立刻冻结,需要持卡人亲自到银行进行账户解冻,并提供必要的证明材料以证明资金来源的合法性。
因此,进一步提高风险识别准确性是AML系统进一步优化的关键。2021年,金融科技公司R3推出基于机密计算的Conclave解决方案,采用Intel SGX技术构建安全计算空间,使不同机构间可以有效地共享和汇集专有数据。
老练的犯罪分子通常会规避金融机构采取的反洗钱措施,将交易额和交易量分散到不同机构来逃避检测。而不同金融机构之间,出于隐私性的顾虑仅会共享有限的数据,犯罪分子因此可能侥幸逃脱单个机构的监控。而一旦多个机构能够实现普遍数据共享,那么这份“幸运”便将被终结。
3.3 技术原理
机密计算通过可信执行环境提供的加密和隔离的环境,保护运行中数据的机密性和完整性。同时,采用严格的远程验证,确保任何人访问数据都必须经过严格授权。从而,数据在不同机构之间流通,处于一种“可用不可见”的状态:能够在机密的环境中提供风险识别所需的数据特征,同时隐私数据又处于可靠的保护之中。
基于机密计算的AML系统,使金融机构、监管机构、政府机构乃至国际组织等多个机构之间能够协作,甚至实时交换数据。在数据共享的前提下,AML系统能够更加迅速地识别出犯罪分子在多个机构之间发生的可疑活动模式,在风险识别上达到更高的准确率。
降低误报率,不仅仅意味着减少客户的麻烦,还能有效维持客户信任度和金融机构声誉,打击违法犯罪行为,减少合规性风险。同时,释放更多的人力和资金成本,集中用于真正的高风险交易和策略制定上。
本账号发布内容均为原创,欢迎转载,转载请注明出处。更多资讯请移步【机密计算前沿技术】服务号,欢迎交流!