时间复杂度和空间复杂度

一个算法的好坏取决于其运行速度与所需要的额外空间,即时间复杂度与空间复杂度。
一个算法所花费的时间与其中语句的执行次数成正比例,算法中基本操作的执行次数,为算法的时间复杂度。
时间复杂度不用时间来衡量,而是用基本语句的执行次数来衡量,这是因为每个计算法执行语句的速度都是不一样的,一个算法放在不同的计算机上执行会出现不同的时间,从而用基本语句的执行次数来衡量时间复杂度。
计算时间复杂度的时候通常不用计算出精确的执行次数,而是只需要大概的执行次数,这里我们使用大O渐进表示法。
推导大O阶方法:
1.用常数1取代运行时间中的所有加法常数。
2.在修改后的运行次数函数中,只保留最高阶项。
3.如果最高阶存在且不是1,则去除与这个项目相乘的常数,得到的结果就是大O阶。
在计算时间复杂度的时候通常计算最差的情况,因为要考虑到最差情况发生,所以计算时间复杂度看的是最差情况。

二分查找的时间复杂度:
每找一次长度变成原长度的1/2,最好情况一次找到,最差情况logN次找到。所以时间复杂度为O(logN)。

递归求阶乘的时间复杂度:
递归一层一层向下递归,直到n为1的时候,递归返回,递归了n次,基本语句执行了n次,所以时间复杂度为O(N)。

递归斐波那契的时间复杂度:
递归斐波那契生成二叉树状的递归图形,每次递归生成两个子元素,一共递归2的n次方次。所以时间复杂度为O(2^n)。

空间复杂度是对一个算法运行过程中临时占用存储空间大小的量度。
空间复杂度与时间复杂度类似,都使用大O渐进表示法。通过计算算法运行中开辟的额外空间来计算空间复杂度。
普通函数的空间复杂度由开辟的额外空间决定,递归函数由递归调用的次数,开辟栈帧的个数和每个栈帧使用的空间决定。

递归斐波那契数列的时间复杂度和空间复杂度分析:

long long Fibonacci(size_t n) {
	if (n < 3) {
		return 1;
	}
	else {
		return Fibonacci(n - 1) + Fibonacci(n - 2);
	}
}

递归斐波那契生成二叉树状的递归图形,每次递归生成两个子元素,一共递归2的n次方次。所以时间复杂度为O(2^n)。
递归斐波那契数列开辟了N个栈帧,每个栈帧使用的空间为常数,所以空间复杂度为O(N)。
对其进行优化:

long long* Fibonacci(size_t n) {
	if (n == 0) {
		return NULL;
	}
	long long* fibarray = (long long*)malloc(n * 8 + 1);//主函数调用后释放
	fibarray[0] = 0;
	fibarray[1] = 1;
	for (size_t i = 2; i < n; ++i) {
		fibarray[i] = fibarray[i - 1] + fibarray[i - 2];
	}
	return fibarray;
}

此时时间复杂度为O(N),空间复杂度为O(N)。

常见时间复杂度:
冒泡排序法:O(N^2)
二分查找:O(logN)
阶乘递归:O(N)
斐波那契递归:O(2^N)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值