某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:
虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷
达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有
的导弹。
输入数据:
第一行为一个整数 N,表示飞来的导弹个数,N<=100000
第二行为 N 个整数,依次表示导弹飞来的高度,高度数据为不大于 30000 的正整数。
输出数据:
第一行,输出计算这套系统最多能拦截多少导弹
第二行,输出要拦截所有导弹最少要配备多少套这种导弹拦截系统。
样例
输入文件:missile.in
8
389 207 155 300 299 170 158 65
输出文件:missile.out
6
2
這是一道線性動態規劃,但需要單調隊列和二分優化。優化前的求最長不降子序列的方法:用f[i]表示以i結尾的最長不降子序列的長度,然後用這個方程f[i] = max(f[j]) + 1(j的高度必須大於等於i的高度)轉移。
優化方法:
求最長不降子序列時,維護一個len[height]值,即f值為height的最大下標,則每次只需要找到一個在len數組中的高度恰好大於f[i]的值,這樣就可以使用二分優化了。
由於len數組是單調的,每次用二分找到這個位置,最後形成的一個最大長度的len數組即為所求。
對於題目中的第二個問,只需要求一次最長上升子序列即可。
ACCode:#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <bitset>
using std::max;
using std::min;
const char fi[] = "missile.in";
const char fo[] = "missile.out";
const int maxN = 100010;
const int MAX = 0x3fffff00;
int len[maxN];
int h[maxN];
int n;
void init_file()
{
freopen(fi, "r", stdin);
freopen(fo, "w", stdout);
}
void readdata()
{
scanf("%d", &n);
for (int i = 1; i < n + 1; ++i)
scanf("%d", h + i);
}
void work()
{
int ans = 0;
len[0] = MAX;
for (int i = 1; i < n + 1; ++i)
{
int l = 0, r = n;
int c = l, Now;
while (l <= r)
{
int Mid = (l + r) >> 1;
if (h[i] < len[Mid])
{
c = Mid;
l = Mid + 1;
}
else r = Mid - 1;
}
Now = c + 1;
len[Now] = max(len[Now], h[i]);
ans = max(ans, Now);
}
printf("%d\n", ans);
ans = 0;
len[0] = 0;
for (int i = 1; i < n + 1; ++i)
len[i] = MAX;
for (int i = 1; i < n + 1; ++i)
{
int l = 0, r = n;
int c = l, Now;
while (l <= r)
{
int Mid = (l + r) >> 1;
if (h[i] >= len[Mid])
{
c = Mid;
l = Mid + 1;
}
else r = Mid - 1;
}
Now = c + 1;
len[Now] = min(len[Now], h[i]);
ans = max(ans, Now);
}
printf("%d", ans);
}
int main()
{
init_file();
readdata();
work();
exit(0);
}