【線段樹】最大數

试题描述:现在请求你维护一个数列,要求提供以下两种操作:
1、	查询操作。
语法:Q L
功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。
限制:L不超过当前数列的长度。
2、	插入操作。
语法:A n
功能:将n加上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取模,将所得答案插入到数列的末尾。
限制:n是非负整数并且在长整范围内。
注意:初始时数列是空的,没有一个数。

输入文件:第一行两个整数,M和D,其中M表示操作的个数(M <= 200,000),D如上文中所述,满足(0<D<2,000,000,000)
  接下来的M行,每行一个字符串,描述一个具体的操作。语法如上文所述。
输出文件:对于每一个查询操作,你应该按照顺序依次输出结果,每个结果占一行。

输入样例:
5 100
A 96
Q 1
A 97
Q 1
Q 2

输出样例:
96
93
96
一道線段樹的簡單題。
先建一個比較大的線段樹(總操作數200000),再直接按相關線段樹的操作做就行了。
Accode:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <bitset>

using std::max;

const char fi[] = "maxnumber.in";
const char fo[] = "maxnumber.out";
const int maxN = 200010;
const int MAX = 0x3fffff00;
const int MIN = -MAX;

struct SegTree{int L, R, lc, rc, Max; };
SegTree tree[maxN << 2];
int N, mod, n, t, tot;

  void init_file()
  {
    freopen(fi, "r", stdin);
    freopen(fo, "w", stdout);
  }
  
  void Build(int L, int R)
  {
    int Now = ++tot;
    tree[Now].L = L;
    tree[Now].R = R;
    tree[Now].Max = MAX;
    int Mid = (L + R) >> 1;
    if (L < R)
    {
      tree[Now].lc = tot + 1;
      Build(L, Mid);
      tree[Now].rc = tot + 1;
      Build(Mid + 1, R);
    }
  }
  
  void insert(int Now, int p, int x)
  {
    if (tree[Now].L == tree[Now].R
      && tree[Now].L == p)
      {tree[Now].Max = x; return; }
    int Mid = (tree[Now].L + tree[Now].R) >> 1;
    if (p <= Mid) insert(tree[Now].lc, p, x);
    if (p > Mid) insert(tree[Now].rc, p, x);
    tree[Now].Max = max(tree[tree[Now].lc].Max,
      tree[tree[Now].rc].Max);
  }
  
  int Query(int Now, int L, int R)
  {
    if (L <= tree[Now].L && R >= tree[Now].R)
      return tree[Now].Max;
    int Mid = (tree[Now].L + tree[Now].R) >> 1;
    if (R <= Mid) return Query(tree[Now].lc, L, R);
    if (Mid < L) return Query(tree[Now].rc, L, R);
    int lc = Query(tree[Now].lc, L, R),
      rc = Query(tree[Now].rc, L, R);
    return max(lc, rc);
  }
  
  void work()
  {
    scanf("%d%d", &N, &mod);
    tot = 0;
    Build(1, maxN - 1);
    t = 0;
    for (; N; --N)
    {
      int x;
      switch (getchar(), getchar())
      {
        case 'A' :
        {
          scanf("%d", &x);
          x += t; x %= mod;
          ++n;
          insert(1, n, x);
          break;
        }
        case 'Q' :
        {
          scanf("%d", &x);
          printf("%d\n", t = Query(1, n - x + 1, n));
          break;
        }
      }
    }
  }
  
int main()
{
  init_file();
  work();
  exit(0);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值