试题描述:现在请求你维护一个数列,要求提供以下两种操作:
1、 查询操作。
语法:Q L
功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。
限制:L不超过当前数列的长度。
2、 插入操作。
语法:A n
功能:将n加上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取模,将所得答案插入到数列的末尾。
限制:n是非负整数并且在长整范围内。
注意:初始时数列是空的,没有一个数。
输入文件:第一行两个整数,M和D,其中M表示操作的个数(M <= 200,000),D如上文中所述,满足(0<D<2,000,000,000)
接下来的M行,每行一个字符串,描述一个具体的操作。语法如上文所述。
输出文件:对于每一个查询操作,你应该按照顺序依次输出结果,每个结果占一行。
输入样例:
5 100
A 96
Q 1
A 97
Q 1
Q 2
输出样例:
96
93
96
一道線段樹的簡單題。先建一個比較大的線段樹(總操作數200000),再直接按相關線段樹的操作做就行了。
Accode:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <bitset>
using std::max;
const char fi[] = "maxnumber.in";
const char fo[] = "maxnumber.out";
const int maxN = 200010;
const int MAX = 0x3fffff00;
const int MIN = -MAX;
struct SegTree{int L, R, lc, rc, Max; };
SegTree tree[maxN << 2];
int N, mod, n, t, tot;
void init_file()
{
freopen(fi, "r", stdin);
freopen(fo, "w", stdout);
}
void Build(int L, int R)
{
int Now = ++tot;
tree[Now].L = L;
tree[Now].R = R;
tree[Now].Max = MAX;
int Mid = (L + R) >> 1;
if (L < R)
{
tree[Now].lc = tot + 1;
Build(L, Mid);
tree[Now].rc = tot + 1;
Build(Mid + 1, R);
}
}
void insert(int Now, int p, int x)
{
if (tree[Now].L == tree[Now].R
&& tree[Now].L == p)
{tree[Now].Max = x; return; }
int Mid = (tree[Now].L + tree[Now].R) >> 1;
if (p <= Mid) insert(tree[Now].lc, p, x);
if (p > Mid) insert(tree[Now].rc, p, x);
tree[Now].Max = max(tree[tree[Now].lc].Max,
tree[tree[Now].rc].Max);
}
int Query(int Now, int L, int R)
{
if (L <= tree[Now].L && R >= tree[Now].R)
return tree[Now].Max;
int Mid = (tree[Now].L + tree[Now].R) >> 1;
if (R <= Mid) return Query(tree[Now].lc, L, R);
if (Mid < L) return Query(tree[Now].rc, L, R);
int lc = Query(tree[Now].lc, L, R),
rc = Query(tree[Now].rc, L, R);
return max(lc, rc);
}
void work()
{
scanf("%d%d", &N, &mod);
tot = 0;
Build(1, maxN - 1);
t = 0;
for (; N; --N)
{
int x;
switch (getchar(), getchar())
{
case 'A' :
{
scanf("%d", &x);
x += t; x %= mod;
++n;
insert(1, n, x);
break;
}
case 'Q' :
{
scanf("%d", &x);
printf("%d\n", t = Query(1, n - x + 1, n));
break;
}
}
}
}
int main()
{
init_file();
work();
exit(0);
}