题目描述:
【问题描述】
小佳最近迷上了导游这个工作,一天到晚想着带游客参观各处的景点。正好M 市在举行 NOI,来参观的人特别的多。不少朋友给小佳介绍了需要导游的人。
M 市有 n 个著名的景点,小佳将这些景点从 1 至 n 编号。有一些景点之间存在双向的路。小佳可以让游客们在任何一个景点集合,然后带着他们参观,最后也可以在任何一个景点结束参观。不过,来参观的游客们都不愿去已经参观过的地方。所以,小佳不能带游客们经过同一个景点两次或两次以上。
小佳希望你帮助他设计一个方案, 走可行的路线, 带游客们参观尽可能多的地方。
【输入格式】
输入文件为 guide1.in~guide10.in,第一行为两个整数 n,m,分别表示景点数和路的条数。接下来 m 行,每行两个整数 a,b,表示景点 a 和景点 b 之间有一条双向路。
【输出格式】
你需要将答案输出到 guide1.out~guide10.out 中,guide?.out 为对应 guide?.in的答案。输出的第一行为 p,表示你能找到的路径所经过的景点个数。接下来 p行,每行一个整数,按顺序表示你所找到的路径上的每一个景点。
【说明】
这是一道提交答案式的题目,你不需要提供任何源代码,只需要将自己的输出文件放在与*.in 同一个目录即可。
【样例】
样例输入
5 5
1 2
3 2
2 4
2 5
4 5
样例输出
4
1
2
4
5
【样例说明】
题目可能有多解,该样例有 4 个解,你只需输出其中任何一个解。
解1 解2 解3 解4
4 4 4 4
1 1 3 3
2 2 2 2
4 5 4 5
5 4 5 4
【评分方法】
你的评分将由你的答案与标准答案之间的差异来给定。设你的答案正确且参
观的景点数为 x,我们所给出的结果为 ans,则按下表计算你的得分:
得分 条件 得分 条件
12 x > ans 5 x ≥ ans * 0.93
10 x = ans 4 x ≥ ans * 0.9
9 x ≥ ans – 1 3 x ≥ ans * 0.8
8 x ≥ ans – 2 2 x ≥ ans * 0.7
7 x ≥ ans – 3 1 x ≥ ans * 0.5
6 x ≥ ans * 0.95 0 x < ans * 0.5
如果有多项满足,则取满足条件中的最高得分。
第5、6组数据有规律,为若干个矩形网格拼接成的,找出其中最大的矩形然后按照规则构造即可。
第7组数据有规律,每5个为一个连通块,每两个相邻的连通块之间有且只有一条边相连(即1~5,6~10,11~15,...完全连通。且1~5中存在一点到6~10中的点有边,6~10中存在一点到11~15中的点有边,依次类推),可以手动构造。
第9、10组数据为一棵树,可以用两次Bfs解决。
总的做法:随机起点,搜索。期望得分:大于80分。
某一天突然右找了篇题解,发现可以用以下方法做:
受到第9、10组数据的启发,我们可以在原图的基础上随机生成一棵树,然后在树中找最长链作为最终答案。
在生成树的时候,需要一点点技巧才能得到满分。
注意到如果生成的树中,出现了一个度很大的结点,那么答案必定不是最优的。
于是可以按照结点的度来进行贪心,每次先扩展度最小的结点,再扩展其它结点。
代码:
/************************************\
* @prob: NOI2006 guide *
* @auth: Wang Junji *
* @stat: 100分 *
* @date: June. 5th, 2012 *
* @memo: 随机化贪心,树上求最长链 *
\************************************/
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <string>
#include <ctime>
const int maxN = 10010, SIZE = 0xffff;
struct Edge
{
int v; Edge *next; Edge() {}
Edge(int v, Edge *next): v(v), next(next) {}
} *edge[maxN], tmp[maxN], *tot = tmp; bool marked[maxN], use[maxN][maxN];
int dist[maxN], pre[maxN], Deg[maxN], deg[maxN], res[maxN], root, n, m, ans;
inline int Bfs(int S)
{
static int q[SIZE + 1]; static bool marked[maxN];
memset(pre, 0, sizeof pre);
memset(dist, 0, sizeof dist); dist[S] = 0;
memset(marked, 0, sizeof marked);
int f = 0, r = 0, u, v; Edge *p;
for (marked[q[r++] = S] = 1; f - r;)
for (p = edge[u = q[f++]], f &= SIZE; p; p = p -> next)
if (!marked[v = p -> v] && use[u][v])
dist[v] = dist[u] + 1, pre[v] = u, marked[q[r++] = v] = 1, r &= SIZE;
int pos = S; for (int i = 1; i < n + 1; ++i) if (dist[i] > dist[pos]) pos = i;
return pos;
}
void Dfs(int u)
{
int Min = 0x3f3f3f3f, pos = 0; marked[u] = 1;
for (Edge *p = edge[u]; p; p = p -> next) --deg[p -> v];
for (Edge *p = edge[u]; p; p = p -> next) if (!marked[p -> v])
{
int v = p -> v;
if (deg[v] < Min) Min = deg[v], pos = v;
// else if (deg[v] == Min && (rand() & 1)) pos = v;
}
if (pos) Dfs(pos); use[u][pos] = use[pos][u] = 1;
for (Edge *p = edge[u]; p; p = p -> next) if (!marked[p -> v])
Dfs(p -> v), use[u][p -> v] = use[p -> v][u] = 1;
return;
}
int main()
{
freopen("../in/guide3.in", "r", stdin);
freopen("../out/guide3.out", "w", stdout);
srand(time(NULL)); scanf("%d%d", &n, &m);
while (m--)
{
int u, v; scanf("%d%d", &u, &v);
edge[u] = new (tot++) Edge(v, edge[u]);
edge[v] = new (tot++) Edge(u, edge[v]);
++Deg[u], ++Deg[v];
}
for (int t = 0; t < 1000; ++t)
{
memset(marked, 0, sizeof marked);
memcpy(deg, Deg, sizeof deg);
memset(use, 0, sizeof use);
Dfs(root = rand() % n + 1);
int S = Bfs(root), T = Bfs(S);
if (dist[T] + 1 > ans)
{
ans = 0; for (int i = T; i - S; i = pre[i]) res[ans++] = i; res[ans++] = S;
FILE *tmp = fopen("../out/guide3.out", "w");
fprintf(tmp, "%d\n", ans);
for (int i = 0; i < ans; ++i) fprintf(tmp, "%d\n", res[i]);
fclose(tmp);
}
}
printf("%d\n", ans);
for (int i = 0; i < ans; ++i) printf("%d\n", res[i]);
return 0;
}