【模板】 计算组合数以及阶乘的逆元

 1e5 到 1e6

ll fac[maxn]={1,1},inv[maxn]={1,1},f[maxn]={1,1};
ll C(ll a,ll b){
    if(b>a)return 0;
    return fac[a]*inv[b]%mod*inv[a-b]%mod;
}
void init(){//快速计算阶乘的逆元
    for(int i=2;i<maxn;i++){
        fac[i]=fac[i-1]*i%mod;
        f[i]=(mod-mod/i)*f[mod%i]%mod;
        inv[i]=inv[i-1]*f[i]%mod;
    }
}


当n,m较大但是mod较小且为素数时,可以用lucas求解组合数

Cab

ll mulit(ll a, ll b, ll m)
{
    ll ans = 0;
    while(b)
    {
        if(b & 1)
            ans = (ans + a) % m;
        a = (a << 1) % m;
        b >>= 1;
    }
    return ans;
}
  
ll quick_mod(ll a, ll b, ll m)
{
    ll ans = 1;
    while(b)
    {
        if(b&1)
            ans = mulit(ans, a, m);
        a = mulit(a, a, m);
        b >>= 1;
    }
    return ans;
}
  
ll comp(ll a, ll b, ll m)
{
    if(a < b)
        return 0;
    if(a == b)
        return 1;
    if(b > a - b)
        b = a - b;
    ll ans = 1, ca = 1, cb = 1;
  
    for(int i = 0; i < b; i++)
    {
        ca = ca * (a - i) % m;
        cb = cb * (b - i) % m;
    }
  
    ans = ca * quick_mod(cb, m - 2, m) % m;
    return ans;
}
  
ll lucas(ll a,ll b,ll m)
{
    ll ans = 1;
    while(a && b)
    {
        ans = (ans * comp(a % m, b % m, m)) % m;
        a /= m;
        b /= m;
    }
    return ans;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值