1e5 到 1e6
ll fac[maxn]={1,1},inv[maxn]={1,1},f[maxn]={1,1};
ll C(ll a,ll b){
if(b>a)return 0;
return fac[a]*inv[b]%mod*inv[a-b]%mod;
}
void init(){//快速计算阶乘的逆元
for(int i=2;i<maxn;i++){
fac[i]=fac[i-1]*i%mod;
f[i]=(mod-mod/i)*f[mod%i]%mod;
inv[i]=inv[i-1]*f[i]%mod;
}
}
当n,m较大但是mod较小且为素数时,可以用lucas求解组合数
Cab
ll mulit(ll a, ll b, ll m)
{
ll ans = 0;
while(b)
{
if(b & 1)
ans = (ans + a) % m;
a = (a << 1) % m;
b >>= 1;
}
return ans;
}
ll quick_mod(ll a, ll b, ll m)
{
ll ans = 1;
while(b)
{
if(b&1)
ans = mulit(ans, a, m);
a = mulit(a, a, m);
b >>= 1;
}
return ans;
}
ll comp(ll a, ll b, ll m)
{
if(a < b)
return 0;
if(a == b)
return 1;
if(b > a - b)
b = a - b;
ll ans = 1, ca = 1, cb = 1;
for(int i = 0; i < b; i++)
{
ca = ca * (a - i) % m;
cb = cb * (b - i) % m;
}
ans = ca * quick_mod(cb, m - 2, m) % m;
return ans;
}
ll lucas(ll a,ll b,ll m)
{
ll ans = 1;
while(a && b)
{
ans = (ans * comp(a % m, b % m, m)) % m;
a /= m;
b /= m;
}
return ans;
}