动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。
典型的错误解法:
import java.util.Scanner;
public class P2479 {
/**
* 典型的错误解法
*/
public static void main(String[] args) {
Scanner in =new Scanner(System.in);
int casesNumber =in.nextInt();
while (casesNumber!=0) {
casesNumber--;
int number=in.nextInt();
int n[]=new int[number];
for (int i = 0; i < n.length; i++) {
n[i]=in.nextInt();
}
System.out.println(dy(n));
}
}
static int dy(int[] n){
int s1=0,t1=0,s2=1,t2=1;
int max=0;
for (s1 = 0;s1 < n.length-1; s1++) {
for (t1 = s1; t1 < n.length-1; t1++) {
for (s2 = t1+1; s2 < n.length; s2++) {
for (t2 = s2; t2 < n.length; t2++) {
int sum=sum(n,s1,t1,s2,t2);
if(max<sum)
{
max=sum;
}
}
}
}
}
return max;
}
static int sum(int[] n,int begin,int end,int begin2,int end2){
int sum=0;
for (int i = begin; i < end; i++) {
sum+=n[i];
}
for (int i = begin2; i < end2; i++) {
sum+=n[i];
}
return sum;
}
}