POJ2479 Java 动态规划

动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。

典型的错误解法:

import java.util.Scanner;

public class P2479 {

	/**
	 * 典型的错误解法
	 */
	public static void main(String[] args) {
		Scanner in =new Scanner(System.in);
		int casesNumber =in.nextInt();
		while (casesNumber!=0) {			
			casesNumber--;
			int number=in.nextInt();
			int n[]=new int[number];
			for (int i = 0; i < n.length; i++) {
				n[i]=in.nextInt();
			}
			System.out.println(dy(n));
		}
	}
	static int dy(int[] n){
		int s1=0,t1=0,s2=1,t2=1;
		int max=0;
		for (s1 = 0;s1 < n.length-1; s1++) {
			for (t1 = s1; t1 < n.length-1; t1++) {
				for (s2 = t1+1; s2 < n.length; s2++) {
					for (t2 = s2; t2 < n.length; t2++) {
						int sum=sum(n,s1,t1,s2,t2);
						if(max<sum)
						{
							max=sum;
						}
					}
				}
			}
		}
		return max;
	}
	static int sum(int[] n,int begin,int end,int begin2,int end2){
		int sum=0;
		for (int i = begin; i < end; i++) {
			sum+=n[i];
		}
		for (int i = begin2; i < end2; i++) {
			sum+=n[i];
		}
		return sum;
	}
	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值