CF937B题解

本文分享了一种更高效的解决方案,通过前置芝士证明法避免了O(py)的时间复杂度,降低了查找[2,y]区间内[2,p]倍数的复杂度。核心思路是利用质数性质检查,代码展示了如何在O(p)时间内找出符合条件的整数。
摘要由CSDN通过智能技术生成

原题传送门

solution 1

看到题目,我是一开始想(我太弱了)先预处理出 2 ∼ p 2\sim p 2p 的倍数中所有 ⩽ y \leqslant \text{y} y 的数,但时间复杂度是 O ( p y ) \mathcal O (py) O(py),最差 O ( ( 1 0 9 ) 2 ) = O ( 1 0 18 ) \mathcal O ((10^9)^2) = \mathcal O (10^{18}) O((109)2)=O(1018) 明显超时。。。

for(int i=2;i<p;i++){
        for(int j=i;j<y;j+=i){
            num[j]=1;
        }
}

solution 2

前置芝士

求 x 是否是质数:

定义 n = ⌊ x ⌋ n = \left \lfloor \sqrt{x}\right\rfloor n=x

则如果在 [ 2 , n ] \left[2,n\right] [2,n] 中没有 n n n 的因数 [ 2 , x ] \left[2,x\right] [2,x] 2 2 2 x x x 中没有 x x x 的因数。

证明:由于一个数的因数是对应的,

a ∣ n a \mid n an ( n ÷ a ) ∣ n (n \div a)\mid n (n÷a)n

所以若 [ 2 , n ] \left[2,n\right] [2,n] 没有其因数,它就是素数,证毕。

思路

根据前置芝士,我们可以推断出若 [ 2 , y ] [2,\sqrt{y}] [2,y ]中没有 [ 2 , p ] [2,p] [2,p]的任意一个数的倍数,则 [ 2 , y ] [2,y] [2,y]中没有 [ 2 , p ] [2,p] [2,p]的任意一个数的倍数。

code
int p,y;
    cin>>p>>y;
    bool a=0;
    for(int i=y;i>p;i--){
        a=0;
        for(int j=2;j<=sqrt(i)&&j<=p;j++){
            if(i%j==0){
                a=1;
                break;
            }
        }
        if(!a){
            cout<<i<<endl;
            return 0;
        }
    }
    cout<<-1;

the end.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值