2016真题 javaB 蓝桥杯 第十题 压缩变换
压缩变换
小明最近在研究压缩算法。
他知道,压缩的时候如果能够使得数值很小,就能通过熵编码得到较高的压缩比。
然而,要使数值很小是一个挑战。
最近,小明需要压缩一些正整数的序列,这些序列的特点是,后面出现的数字很大可能是刚出现过不久的数字。对于这种特殊的序列,小明准备对序列做一个变换来减小数字的值。
变换的过程如下:
从左到右枚举序列,每枚举到一个数字,如果这个数字没有出现过,刚将数字变换成它的相反数,如果数字出现过,则看它在原序列中最后的一次出现后面(且在当前数前面)出现了几种数字,用这个种类数替换原来的数字。
比如,序列(a1, a2, a3, a4, a5)=(1, 2, 2, 1, 2)在变换过程为:
a1: 1未出现过,所以a1变为-1;
a2: 2未出现过,所以a2变为-2;
a3: 2出现过,最后一次为原序列的a2,在a2后、a3前有0种数字,所以a3变为0;
a4: 1出现过,最后一次为原序列的a1,在a1后、a4前有1种数字,所以a4变为1;
a5: 2出现过,最后一次为原序列的a3,在a3后、a5前有1种数字,所以a5变为1。
现在,给出原序列,请问,按这种变换规则变换后的序列是什么。
输入格式:
输入第一行包含一个整数n,表示序列的长度。············
第二行包含n个正整数,表示输入序列。
输出格式:
输出一行,包含n个数,表示变换后的序列。
例如,输入:
5
1 2 2 1 2
程序应该输出:
-1 -2 0 1 1
再例如,输入:
12
1 1 2 3 2 3 1 2 2 2 3 1
程序应该输出:
-1 0 -2 -3 1 1 2 2 0 0 2 2
数据规模与约定
对于30%的数据,n<=1000;
对于50%的数据,n<=30000;
对于100%的数据,1 <=n<=100000,1<=ai<=10^9
这个题目不是很难,不需要用很难得算法,理清楚逻辑,就能做出来,哇,小菜鸡我竟然能搞出第十题,虽然这个题目挺水但是还是纪念一下!
package javaB;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class _10压缩变换 {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int[] a = new int[n];
ArrayList<Integer> lista = new ArrayList<Integer>();//去重
ArrayList<Integer> listb = new ArrayList<Integer>();//存储输出数列
for(int i=0;i<n;i++)
a[i] = input.nextInt();
for(int i=0;i<n;i++){
if(!lista.contains(a[i])){//判断这个数字是否是第一次出现
lista.add(a[i]);//添加
listb.add(-a[i]);//存储相反数
}
else{
Set set = new HashSet();//HashSet不能添加重复值,用它来确定上一次出现a[i]到这一次之间,有多少个不同数字,
for(int j=i-1;j>=0;j--){
if(a[j]==a[i])//到达上一次出现a[i]的位置,跳出循环
break;
set.add(a[j]);//用set来去重
}
listb.add(set.size());set的大小就是出现不同数字的个数
}
}
for(int i=0;i<listb.size();i++){//输出
System.out.print(listb.get(i)+" ");
}
}
}