1157:哥德巴赫猜想

【题目描述】
哥德巴赫猜想的命题之一是:大于6 的偶数等于两个素数之和。编程将6~100所有偶数表示成两个素数之和。

【输入】
(无)

【输出】
分行输出:

例如:

6=3+3

8=3+5

(每个数只拆开一次,请保证第一个加数最小)

【输入样例】
(无)
【输出样例】
(无)

#include<iostream>
using namespace std;
bool isPrime(int x)
{	
	//3.判断x是否是素数
	if(x<2) return false; //2之前的不是素数
	for(int i=2;i<x;i++) //最小的素数是2 
	{
		if(x%i==0) return false;  //只要出现余数为0的情况,就不会是素数
	} 
	return true;  //剩下的数都是素数
}
int split(int x)
{
	//2.拆分数字x
	cout<<x<<"=";
	for(int i=2;i<x;i++)  //先遍历第一个数 
	{
		int i2=x-i;  //得到第二个数 
		if(isPrime(i)&&isPrime(i2))  //两个数分别进行素数的判断 
		{
			cout<<i<<"+"<<i2<<endl;  //两个数都是素数的情况下才能输出 
			break;  //跳出循环,保证最小的素数在前面 
		}
	}
}
int main() 
{   
	for(int i=6;i<=100;i+=2)  //1.将偶数遍历出来 
	{
		split(i);  //调用拆分函数 
	}
	return 0; 
}

总结

题目划分了三个步骤:

①遍历偶数,并且调用拆分函数。

  这个步骤是在主函数main里写的,这个函数只要做遍历偶数和调用函数两件事情就可以了。巧妙地利用了赋值运算符+=与for循环的结合,将6-100之间的偶数都以参数的方式传进去即可。

②在拆分函数中,将传入的偶数拆成两个数,拆开的数进行素数的判断。

  根据题目的要求,先把偶数打印出来,得到左边的 “6=”,再用循环遍历的方法确定第一个数的范围。有了第一个数范围之后,就可以确定第二数的范围。因为我们通过观察得出规律:第二个数 = 偶数 - 第一个数 。接着,我们假设素数函数存在,将两个数分别传入,如果都是素数才可以进行表达式的输出,为了确保最小的素数在前面,我们要用break进行跳出循环的操作。

③写一个判断素数的函数。

  做三件事情:第一,判断x小于2的数是不是素数。第二,判断从2到x-1的数是不是素数。第三,剩下的都返回true即可,也就是剩下的数都是素数。

   例子:7是不是素数。
   从2开始遍历,也就是2、3、4、5、6
   7除以2或3或4或5或6,余数都不是0,所以就返回true,也就是7是素数。

   例子:6是不是素数。
   从2开始遍历,也就是2、3、4、5
   6除以2或3或4或5,只要有余数是0的情况,就会返回false,也就是6不是素数。

   所以,当循环遍历的时候,不可以遍历自己。

   素数:它的因数只有1和本身。素数也可以叫做质数。从字面意思上去看,素数的性格是朴素的,质数的性格是追求质量,它们的共同点就是以少为主,因此共同点可以与素数的概念联系在一起。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 巴赫猜想是一个数学猜想,它认为任何一个大于2的偶数都可以表示成两个质数之和。为了验证这个猜想,我们可以使用函数的方法。 首先,我们可以定义一个函数isPrime(n),用来判断一个数n是否为质数。如果n是质数,返回True,否则返回False。 接着,我们可以定义一个函数goldbach(n),用来验证巴赫猜想。这个函数的实现方法是,从2开始遍历所有小于等于n/2的质数p,然后判断n-p是否也是质数。如果是,那么n可以表示成p和n-p两个质数之和,返回True。如果遍历完所有小于等于n/2的质数p后,都没有找到一个满足条件的p,那么返回False。 最后,我们可以编写一个主函数,用来输入一个偶数n,并调用goldbach(n)函数来验证巴赫猜想。如果返回True,说明猜想成立;如果返回False,说明猜想不成立。 总之,通过函数的方法,我们可以验证巴赫猜想,从而更好地理解数学中的重要概念和方法。 ### 回答2: 巴赫猜想是一项著名的数学难题,提出者是国数学家巴赫。其核心观点为:每个大于2的偶数都能够表示成为两个质数之和的形式,即一个数能够被表示为p+q的形式,其中p与q均为质数。这个猜想一直是数学领域里备受关注的难题之一,且在17世纪至今,数学家们从未找到一个完美的证明方式。本篇就介绍一个最新的验证巴赫猜想的方法。 2013年4月,美国数学家特里·波洛(Terence Tao)发表了一篇关于巴赫猜想的文章,他使用了一种不同于人们以前应用的方法来验证这一猜想。这个新方法的核心思想是碱基:每个偶数都可以表示成为三个质数之和,这三个质数必须在同一组“碱基”中。 特别的,当验证的数字为偶数时,波洛将其分成两个数字之和,并分别对两个数字进行素数分解。接着,他将这两个数字所对于的两个素数集合的共同素元素称为碱基,然后将不在这两个集合中的素数看作特殊的单元素集合。波洛通过对不同的数字进行预处理,最终利用这些碱基的组合方式,确保每个偶数都可以被表示成为三个素数的和。 波洛的这种新方法,解释巴赫猜想得到了广泛的认可,即将数字表示为一组碱基的组合。从这个角度来看,巴赫猜想不再是一道迷题,而成为了一种广泛的数值表达形式,值得数学家们进行进一步的研究和开发。 ### 回答3: 巴赫猜想,又称为“质数分割定理”,是指任何一个大于2的偶数都可以分解成两个质数之和的形式,例如10=3+7,16=5+11。 由于巴赫猜想太过于著名,所以很多数学家一直在致力于证明它,但直到现在,也没有一个完整的证明出现。 本篇题解采用函数方法来解释与验证巴赫猜想。 先定义一个函数 f(n) = n - p,其中n表示任何一个大于2的偶数,p代表一个小于n的质数。这个函数所代表的意思是:通过从n中减去最小的质数p,来寻找另外一个质数q,使得f(n-q) = n - q - p 也是一个质数。 现在我们能否通过这个函数来验证巴赫猜想呢?根据这个函数的定义,只要我们证明对于任意的偶数n,存在一组p和q,使得f(n)和f(n-q)都是质数,那么巴赫猜想就被验证了。 接下来我们可以采用反证法,假设存在一个偶数n不能写成两个质数之和,说明对于任何一个小于n的质数p,函数f(n)都不是质数。那么对于f(n)而言,表示n减去一个质数p后所得的差不是一个质数,也就是说,n-p可以分解成较小的两个正整数的乘积,即n-p = ab,其中a和b都是大于1的自然数。 这时我们可以使用f(n-q) = n - p - q 这个函数来得到一个更小的组合数:f(n-q) = n - p - q = ab - q。 根据f(n-q)这个函数的定义,这个新得到的数必须也不是质数,否则就可以将n分解成两个质数的和。这样我们就可以看出,过程可以继续下去,并且必须要有一个最小的质数q存在,是可以让f(n-q)不是一个质数。 最终得出的结论是:任何一个偶数n都可以写成两个质数之和的形式,并且这个结果通过函数方法的证明得到了验证。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值