- 博客(104)
- 收藏
- 关注
原创 Particle Swarm Optimization粒子群算法
邻域内离子的比例MinNeighborsFraction 默认设置为0.25,由于采取的是邻域模式,因此定义了一个邻域最少粒子数目,minNeighborhoodSize = max[2, (粒子数目*邻域内粒子的比例)的整数部分]在迭代开始后,每个粒子会有一个邻域,初始时候邻域内的粒子个数(记为Q)就等于邻域最少粒子数目,后续邻域内的粒子个数Q会自适应调整。另外还需要判断粒子i的适应度是否要小于所有粒子迄今为止找到的最小的适应度,如果小的话需要更新所有的粒子的最佳位置为粒子i的位置。
2024-08-12 18:09:01 1638 11
原创 数学建模体育建模和经济建模国防科大版
以此发展,我们接触该事物的次数越多,我们的情感体验也越为淡漠,一步步趋向乏味。这种效应,在经济学和社会学中同样有效,在经济学中叫“边际效益递减率”,在社会学中叫“剥夺与满足命题”,是由霍曼斯提出来的,用标准的学术语言说就是:“某人在近期内重复获得相同报酬的次数越多,那么,这一报酬的追加部分对他的价值就越小。体育科学的研究中,也有大量的数学建模问题,例如:棒球的最佳击球点问题、滑板滑雪赛道的设计、越野自行车比赛车轮的选择、NBA赛程的科学性评价、划艇比赛中运动员的体力分配、体操团体赛出场队员的最佳组合等等。
2024-03-24 14:04:47 2061 17
原创 数学建模博弈理论与实践国防科大版
猪圈的一头有一个食槽,另一头有一个控制猪食供应的按钮按一次按钮,有10个单位的猪食入槽,但是按按钮要付出两个单位的跑动成本。母亲见到她们后说道:“你们三人中至少有一个人的脸是脏的”,她们没有反应,因为这是一个显然的事实,她们认为母亲说的是一句“废话”。如果都承认,将以偷盗罪各判5年。对于Nash平衡点,在别人不改变对策的情况下,每个选手的对策都是最好的,故他们都不会轻易去改变自己的对策。共同知识一每个人都知道这个事实,每个人都知道每个人都知道这个事实,每个人都知道每个人都知道每个人都知道这个事实,…
2024-03-17 09:25:51 2438 12
原创 数学建模理论与实践国防科大版
Borda数规则是一种投票计数法,每个选民在选票上对所有候选人进行排序,每个候选人按照不同的排序名次获得相应的Borda数或积分,积分最高的候选人赢得选举。设有15个选民与3个候选人x、y、z,有意向表7人 x>y>z:7人 y>x>z:1人 z>x>y B(x)=22,B(y)=21,B(z)=2,所以依据Borda数规则,最后投票结果为x>y>z。:(无关候选人的独立性)设x,y是任意两个候选人,若在两次投票中,每个选民对x,y的相对排序都不变,那么在两次选举结果中,x,y的相对排序也应不变。
2024-03-09 19:27:47 2311 7
原创 算法竞赛备赛之斜率优化的DP问题
在处理下图的最小截距问题上面,我们该如何在维护的凸包中找到战距最小的点?相当于在一个单调的队列中,找到第一个大于某一个数的点。斜率单调递增,新加的点的横坐标也单调递增。在查询的时候,可以将队头小于当前斜率的点全部删掉。在插入的时候,将队尾所有不在凸包上的点全部删掉。当斜率不再具有单调性,但是新加的点的横坐标一定单调递增。在查询的时候,只能二分来查找在插入的时候,将队尾所有不在鼓包上的点全部删掉。
2024-02-27 13:25:48 2414 15
原创 单调队列优化DP问题
然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。因此,现在FJ需要你的帮助,找到最合理的安排方案并计算FJ可以得到的最大效率。在一开始的时候,汽车内油量为零,John 每到一个车站就把该站所有的油都带上(起点站亦是如此),行驶过程中不能出现没有油的情况。有一个a x b的整数组成的矩阵,现请你从中找出一个n x n的正方形区域,使得该区域所有数中的最大值和最小值之差最小。输入一个长度为 n 的整数序列,从中找出一段长度不超过 m 的连续子序列,使得子序列中所有数的和最大。
2024-02-13 14:59:59 2873 23
原创 生成树技术&华为ICT网络赛道
技术背景:二层交换机网络的冗余性与环路典型问题1:广播风暴典型问题2:MAC地址漂移初识生成树协议在网络中部署生成树,交换机之间会进行生成树协议报文的交互并进行无环拓扑计算,最终将网络中的某个(或某些)接口进行阻塞(Block),从而打破环路。生成树能够动态响应网络拓扑变化调整阻塞接口交换机上运行的生成树协议会持续监控网络的拓扑结构,当网络拓扑结构发生变化时,生成树能感知到这些变化,并且自动做出调整。因此,生成树既能解决二层环路问题,也能为网络的冗余性提供一种方案。二层及三层环路。
2024-02-06 16:33:31 4646 26
原创 以太网交换基础&VLAN原理与配置
以太网帧格式以太网技术所使用的帧称为以太网帧(Ethernet Frame),或简称以太帧。以太帧的格式有两个标准:Ethernet_II格式和IEEE 802.3格式。MAC地址表示一个MAC地址有48bit,6byteMAC地址通常采用“十六进制” + “-”表示单播以太帧组播以太帧IP地址 vs MAC地址每个以太网设备在出厂时都有一个唯一的MAC地址,但在设备接入网络时,会同时为每台主机再分配一个IP地址,这个原因是什么?两者缺一不可。
2024-01-28 13:34:13 2013 15
原创 OSPF基础&华为ICT网络赛道
由协议之中OSPF(Open Shortest Path First,开放式最短路径优先)协议是使用场 景非常广泛的动态路由协议之一。OSPF在RFC2328中定义,是一种基于链路状态算法的路由协议。静态路由是由工程师手动配置和维护的路由条目,命令行简单明确,适用于小型或稳定的网络。静态路由有以下问题:无法适应规模较大的网络:随着设备数量增加,配置量急剧增加。无法动态响应网络变化:网络发生变化,无法自动收敛网络,需要工程师手动修改。距离矢量路由协议。
2024-01-23 17:53:21 2797 17
原创 算法竞赛备赛进阶之数位DP训练
数位DP的思想就是对每一位进行DP,计算时记忆化每一位可以有的状态,其作用是减少运算时间,避免重复计算。数位DP是一种计数用的DP,一般就是要统计一个区间[A,B]内满足一些条件数的个数。以1e9甚至1e18、1e100的问题为例,因为在统计情况下有很多重复的计算,数位DP实现了相同状态只计算一次,从而大幅减少运算时间。数位DP:技巧1:[X, Y] => f(Y) - f(X-1)技巧2:用树进行排列。
2024-01-16 10:50:14 3504 16
原创 网络层协议及IP编址与IP路由基础&华为ICT网络赛道
IP地址在网络中用于标识一个节点(或者网络设备的接口)。IP地址用于IP报文在网络中的寻址。一个IPv4地址符32bit。IPv4地址通常采用“点分十进制”表示。IP地址寻址网络部分:用来标识一父网络,代表P地址所属网络。主机部分:用来区分一个网络内的不同主机,能唯一标识网段上的某台设备。IP地址分类(有类编址)我们通常把一个网络号所定义的网络范围称为一个网段网络地址:更于标识一个网络。广播地址:用于向该网络中的所有主机发送数据的特殊地址。可用地址:可分配给网络中的节点或网络设备接口的地址。
2024-01-12 23:13:43 2846 20
原创 华为VRP系统基础&华为ICT网络赛道
通用路由平台VRP(Versatile Routing Platform)是华为公司数据通信产品的通用操作系统平台。它以IP业务为核心,采用组件化的体系结构,在实现丰富功能特性的同时,还提供了基于应用的可裁剪和可扩展的功能,使得路由器和交换机的运行效率大大增加。熟悉VRP操作系统并且熟练掌握VRP配置是高效管理华为网络设备的必备基础。VRP是华为公司数据通信产品的通用操作系统平台,作为华为公司从低端到核心的全系列路由器、以太网交换机、业务网关等产品的软件核心引擎。
2024-01-07 16:36:20 4610 14
原创 数据通信网络基础的网络参考模型&华为ICT网络赛道
FTP(File Transfer Protocol)是一个用于从一台主机传送文件到另一台主机的协议,用于文作的“下载”和“上传”,它采用。传输层协议接收来自应用层协议的数据,封装上相应的传输层头部,帮助其建立“端到端”(Port to Port)的连接。传输层负责建立主机之间进程与进程之间的连接,而网络层则负责数据从一台主机到另外一台主机之间的传递。应用的存在,是为了满足人们的各种需求,比如访问网页,在线游戏,在线视频等。通过提供接口的方式,使得各种类型的网络硬件和软件能够相互通信,提高兼容性。
2024-01-01 10:22:59 4327 28
原创 数据通信网络基础&华为ICT网络赛道
数据通信网络基础是通信领域的基本概念,涉及数据传输、路由交换、网络安全等方面的知识。华为ICT网络赛道则是华为公司提出的一种技术路径,旨在通过信息与通信技术(ICT)的融合,为企业提供更加高效、智能的网络解决方案。数据传输原理:包括数据通信的基本概念、传输方式、传输介质等。网络协议:如TCP/IP协议栈,各种路由协议等。路由交换技术:包括路由器的原理、交换机的原理等。网络安全:包括防火墙、入侵检测、加密技术等。云网融合:通过将云计算与网络技术相结合,实现更加高效、智能的网络服务。
2023-12-24 13:45:34 6872 13
原创 算法竞赛备赛进阶之树形DP训练
树形DP是一种动态规划方法,主要用于解决树形结构的问题。在树形DP中,通常会使用动态规划的思想来求解最优化问题。其核心在于通过不断地分解问题和优化子问题来解决原问题,以达到提高效率的目的。树形DP的实现通常会使用递归或迭代的方式,其中递归的方式较为直观,而迭代的方式则可以避免递归可能导致的栈溢出问题。在树形DP中,通常会使用状态转移方程来描述子问题与原问题之间的关系,以及如何从子问题的解推导出原问题的解。通过不断地优化子问题,最终可以求解出原问题的解。
2023-12-17 16:44:15 4800 22
原创 算法竞赛备赛进阶之区间DP训练
区间动态规划(Interval Dynamic Programming,简称 IDP)是一种动态规划算法,用于解决包含区间状态的优化问题。在区间动态规划中,问题可以划分为多个不重叠的区间,每个区间可以独立求解,并且状态在相邻区间之间是独立的。区间动态规划的基本思想是将原问题转化为一系列子问题,每个子问题只涉及一个区间,然后使用动态规划算法求解每个子问题。在求解每个子问题的过程中,可以使用状态转移方程来更新区间状态。下面是一个简单的例子,说明如何使用区间动态规划求解区间和问题。
2023-12-05 19:05:39 3162 26
原创 算法竞赛备赛进阶之状态压缩训练
状态压缩DP是一种暴力的算法,它需要遍历每个状态,而每个状态是多个事件的集合。这种算法通常用于小规模问题的求解,因为它的复杂度是指数级别的。状态压缩DP的两个基本特征包括问题的数据规模特别小,可以通过2的阶乘次进行求解,且题目通常都是选与不选两种选择,可以使用二进制串表示。状态压缩DP通常使用二进制数来表示状态。
2023-11-26 01:22:05 3842 23
原创 算法竞赛备赛进阶之状态机模型训练
算法状态机(ASM)图是一种描述时序数字系统控制过程的算法流程图,其结构形式类似于计算机中的程序流程图。ASM图是用一些特定符号按规定的连接方式来描述数字系统的功能。应用ASM图设计数字系统,可以很容易将语言描述的设计问题变成时序流程图的描述,只要描述逻辑设计问题的时序流程图一旦形成,状态函数和输出函数就容易获得,从而得出相应的硬件电路。
2023-11-17 21:13:41 1772 23
原创 MATLAB的编程与应用,匿名函数、嵌套函数、蒙特卡洛法的掌握与使用
匿名函数(Anonymous function)定义x为指定的函数的自变量,Expr为具体的函数表达式。ff =gg =5 13 25 41单变量匿名函数定义x为指定函数的自变量,Expr为具体的函数表达式含有参数的匿名函数,当参数已知的时候f(1:5)ans =多变量匿名函数% 含有参数的匿名函数,当参数已知的时候f(1:5,2:6)ans =多重匿名函数只有一个@符号的为单重匿名函数;有多个@符号的为二重、多重匿名函数,在参数传递方面非常方便。
2023-11-11 23:57:55 4410 47
原创 Python的网络编程一篇学透,使用Socket打开新世界
上世纪70年代,随着计算机技术的发展,计算机使用者意识到:要想发挥计算机更大的作用,就要将世界各地的计算机连接起来。但是简单的连接是远远不够的,因为计算机之间无法沟通。因此设计一种通用的“语言”来交流是必不可少的,这时TCP/IP协议就应运而生了。TCP/IP(Transmission Control Protocol/Internet Protocol)是传输控制协议和网络协议的简称,它定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。
2023-11-01 21:23:45 4233 32
原创 算法竞赛备赛进阶之背包问题训练
背包问题闫氏分析法回顾:状态表示f[i, j]集合:所有只从当前i个物品中选,且总体积不超过j的选法的集合属性:Max/Min/X+Count状态计算:按最后一步来划分01背包问题:每个物品选与不选完全背包问题:每个物品选0,选1个,选2个,.....多重背包问题:每个物品选0,.........,选si个总结:只有完全背包问题,当空间优化成一维以后,背包问题的体积是从小到大循环的;而其它的背包问题都是从大到小循环的。
2023-10-24 14:56:18 3385 30
原创 算法竞赛备赛进阶之最大上升子序列训练
回顾前文的最大上升子序列问题我们是采用了闫氏DP分析法动态规划:状态表示f[i]集合:所有以a[i]结尾的严格单调上升子序列属性:Max/Min/数量状态计算划分依据:最后一个不同的点贪心算法章节也有相应的解法。
2023-10-24 14:36:55 3147 33
原创 我的创作纪念日
Git上传是有效的版本控制和协作的核心。了解如何使用Git上传并遵循最佳实践将有助于你更好地管理你的项目。希望这篇博客能帮助你更好地理解Git上传的重要性,并在你的项目中正确使用它。不断学习和掌握Git的使用,它将成为你在软件开发中不可或缺的工具。
2023-10-15 21:20:52 3264 34
原创 算法竞赛备赛进阶之数字三角形模型训练
在算法竞赛中,有时候会遇到一些图形相关的题目,需要运用图论相关的知识进行求解。今天我们将一起探讨一个比较常见的模型——数字三角形模型。在数字三角形模型中,每个位置的值是唯一的,而且从前一个位置到当前位置只能沿着三角形的一条边走。以一个数字三角形的顶端开始,可以通过向下或向右移动一步来达到下一个位置,依此类推。以下是一个数字三角形模型的例子:123345456756789现在,假设有一个数字三角形,每个位置的值都是非负整数,并且每个位置的值不能超过该位置的行数。
2023-10-08 16:04:07 4827 43
原创 算法竞赛备赛之贪心算法训练提升,贪心算法基础掌握
给定N个闭区间[ai, bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。输出选择的点的最小数量,位于区间端点上的点也算作是区间内。将每个按区间的右端点从小到大排序从前往后依次枚举每个区间如果当前区间中已经包含点,则直接pass否则,选择当前区间的右端点给定N个比区间[ai, bi],请你在数轴选择若干区间,使得选中的区间之间互不相交(包括端点)输出可选取区间的最大数量。
2023-10-01 11:21:13 5688 34
原创 算法竞赛备赛之动态规划训练提升,DP基础掌握
01背包问题是在M件物品中选择若干件放在空间为W的背包中,每件物品的体积为W1,W2至Wn,价值为P1,P2至Pn,01背包的约束条件是给定几种物品,每种物品有且只有一个,并且有权值和体积两个属性。多重背包问题是在M种物品中选择若干件放在容量为W的背包中,每种物品有无限多个,01背包的约束条件是给定几种物品,每种物品有且只有一个,并且有权值和体积两个属性。每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
2023-09-26 17:16:25 6867 35
原创 人工智能机器学习-飞桨神经网络与深度学习
机器学习(Machine Learning,ML)就是让计算机从数据中进行自动学习,得到某种知识(或者规律)。作为一门学科,机器学习通常指的是一类问题以及解决这类问题的方法,即如何从观测数据(样本)中寻找规律,并利用学习到的规律(模型)对未知或无法观测的数据进行预测。模型解读:介绍机器学习实践五要素(数据、模型、学习准则、优化算法、评估指标)的原理剖析和相应的代码实现,通过理论和代码的结合,加深机器学习的理解。
2023-09-23 14:58:11 3796 35
原创 计算机组成原理之计算机系统概论、计算机的发展史、系统总线,三章开篇讲
现代计算机的多态性把感应器嵌入和装备到电网、铁道、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等各种物体中,并且被普遍连接,形成“物联网”,然后将“物联网”与现有的网络整合起来,实现人类社会与物理系统的整合,形成智慧地球。
2023-09-17 09:54:46 4578 50
原创 操作系统强化认识之Shell编程学习与总结
Shell是一个命令行解释器,它接收应用程序/用户命令,然后调用操作系统内核。Shell还是一个功能强大的编程语言,易编写、易调试、灵活性强。Linux的shell有多种,常见的有:Bash:Bash是Linux默认的Shell,也是最常见的Shell之一。Zsh:Zsh是一个功能强大的Shell,拥有很多特性,可以自动补全命令、支持主题、插件等。Ksh:Ksh是Unix系统默认的Shell,是一种比较流行的Shell。
2023-09-05 16:23:23 6777 54
原创 算法竞赛备赛之数学知识训练提升,暑期集训营培训
Lucas定理的推导过程为:首先需要这个算式:x^f mod p,然后(1+x)n= (1+x)t * (1+x)(n-t) mod p,所以得(1+x)^(t*(p-1)) mod p=11。给定n个0和n个1,他们按照某种顺序排成长度为2n的序列,求它们能排列组合的所有序列中,能够满足任意前缀序列中0的个数都不少于1的个数的序列有多少。设R=(a^f) % n,因为a与n互质,所以a^f与n互质,所以R属于[1,n)。aφ(n)≡1(mod n),其中,a aa与n nn均为正整数,且两者互质。
2023-09-02 10:36:55 4568 41
原创 开悟Optimization guide for intermediate tracks
参赛队伍可以研究英雄设计和机制玩法特点,完善特征、规则、动作空间、奖励等相关设计,提升环境状态表征能力,整合已知先验和,降低策略学习难度并提升单英雄能力上限。对于策略梯度方法,伴随着RL过程,value network学习目标的变化可能比较剧烈,影响了value估计的学习效果,进而影响了整体收敛效果与稳定性。样本池 当前框架版本的MemPool实现并非最优,可能存在一定程度的样本浪费现象 通过改进MemPool数据结构相关实现,改变随机读写方式,可以减少样本被覆盖的情况。
2023-08-24 16:37:36 3857 36
原创 DNQ算法原理(Deep Q Network)
Q-table中的每一行代表一个状态,每一列代表一个动作,表格中的每个元素Q(s,a)表示在状态s下采取动作a所能获得的最大收益的期望值。然后当没有达到目标状态,则执行一下几步,在当前状态s的所有可能行为中选取一个行为a,再利用选定的行为a,得到下一个状态s1,按照前面规定的计算方式来计算Q(s, a),再把s1赋值给我们的s,进行下一步迭代计算。表示在当前s∈S状态下,经过a∈A作用后,会转移到的其他状态的概率分布情况,在状态s下执行动作a,转移到s'的概率可以表示为p(s|s,a)
2023-08-23 16:12:36 5456 27
原创 算法竞赛备赛之搜索与图论训练提升,暑期集训营培训
设G=(V,E)是无向图,如果根据顶点V可分割为两个互不相交的子集(A,B),且图中的每条边(i,j)所关联的两个顶点i和j分属这两个不同的顶点集(i∈A,j∈B),则图G就是一个二分图。该算法的基本思路是从起点开始,每次选择一个距离起点最近的节点,并更新起点到各个节点的距离。二分图有最大匹配和最小匹配问题,在二分图中的一个匹配是指边集中任意两条边都不依附于同一个顶点,极大匹配是指在当前已完成的匹配下,无法再通过增加未完成匹配的边的方式来增加匹配的边数,最大匹配是所有极大匹配当中边数最大的一个匹配。
2023-08-14 08:56:50 3260 42
原创 深度学习,计算机视觉任务
BP网络的输入输出关系实质上是一种映射关系:一个n输入m输出的BP神经网络所完成的功能是从n维欧氏空间向m维欧氏空间中一有限域的连续映射,这一映射具有高度非线性。K(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。虽然这两个模型的损失函数值相同,模型A考虑的是局部,模型B考虑的是全局,它们两的侧重方向是不一样的,只是结果恰好相同而已。我们所看到的绿色线就是我们上一部分向前传播计算,红色的部分会把上一次的梯度携带到下一层的反向传播的计算中。
2023-08-06 15:57:16 3056 44
原创 深度学习,神经网络介绍
在隐藏层中的每一层神经元表示对x进行一次更新的数据,而每层有几个神经元(比如图中hidden1层中有四个神经元)表示将你的输入数据的特征扩展到几个(比如图中就是四个),就比如你的输入三个特征分别为年龄,体重,身高,而图中hidden1层中第一个神经元中经过变换可以变成这样‘年龄0.1+体重0.4+身高0.5’,而第二个神经元可以表示成‘年龄0.2+体重0.5+身高0.3’,每一层中的神经元都可以有不同的表示形式。激活函数是用来加入非线性因素的,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题。
2023-07-31 18:44:05 3141 36
原创 深度学习,卷积神经网络
CNN(卷积神经网络)是一种常见的深度学习神经网络,主要用于图像识别、语音识别和其他图像或语音处理任务。CNN的基本结构包括卷积层(convolutional layer)、池化层(pooling layer)、全连接层(fully connected layer)和激活函数(activation function)。其中,卷积层用于提取图像或语音的特征,池化层用于降低数据的维度,全连接层用于将特征与标签进行映射,激活函数则用于增加非线性特性。
2023-07-28 11:20:03 7023 31
原创 算法竞赛备赛之经典数据结构训练提升,暑期集训营培训
从根节点开始,按照字符串的字符顺序依次遍历每个字符,如果当前节点的子节点中没有对应字符,则说明该字符串不存在于Trie中。在Trie中,插入一个字符串的操作是从根节点开始,按照字符串的字符顺序依次遍历每个字符,如果当前节点的子节点中没有对应字符,就新建一个子节点,并将当前节点移动到该子节点。给定个长度为的字符串,再给定m个询问,每个询问包含四个整数l1,r1,l2,r2,请你判断[l1,r1]和[l2,r2]这两个区间所包含的字符串子串是否完全相同。每个节点存储它的父节点,p[x]表示x的父节点。
2023-07-23 09:08:21 3152 34
原创 Data Structure, Algorithm,and Applications in C++
在学习这本书进阶内容之前,我们可以跟着它的第一章部分再巩固和复习对于普通的传值参数,我们已经司空见惯了我们一般只要对相应的函数体传入形参,在执行的main函数主体中传入实参就可以调用相应的内容。在运行时,函数体在执行前,把实参复制给形参,复制的过程是由形参类型的复制构造函数来完成的。如果实参和形参的类型不一致,那么就必须进行类型转换,把实参转化为形参的类型,前提也很明确,那就是该类型转换是允许的。在函数结束,系统会调用形参类型的析构函数来释放形式参数。当函数运行结束以后,那么形参的只就不会复制到实参当中去。
2023-07-20 10:56:27 53324 36
人工智能介绍,初步了解人工智能的应用、历史由来和工作发展趋势
2023-06-03
强化学习训练DQN模型
2023-07-20
TA创建的收藏夹 TA关注的收藏夹
TA关注的人