推荐系统实战(四)精排-用户行为序列建模

用户行为序列是推荐系统中最重要的一类特征,比如用户的点击序列、观看序列等等。

一、行为序列信息构成

序列中每个元素的embedding由多个部分拼接而成,以下为两个主要部分:

1、物料ID的embedding。

2、时间差信息。即物料消费的时间与当前时间的时间差值。

3、其他信息,比如观看视频的一些元信息(比如作者、来源、分类等)还有动作程度(比如观看时长、观看次数等)。

二、简单pooling

要将用户行为序列压缩成一个embedding,最简单的方式是按位操作(element-wise)。

1、Sum pooling:E_{interest}=\sum{e_i}

Youtube DNN就采用sum pooling来建模。这样做的缺点如下:

  • 用户行为与候选物品之间缺少特征交叉。
  • 推荐不同候选物品时,用户行为序列建模结果不变。
  • 每个行为同等对待,重要性没有区分。

2、Average Pooling:E_{interest}=\frac{1}{N}\sum^N_{i=1}{e_i}

3、Weighted-sum Pooling:E_{interest}=\frac{1}{N}\sum^N_{i=1}{w_ie_i},权重由时间差或者动作程度等来决定。

简单pooling得到的用户兴趣是固定的&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值