数据结构——排序

*排序属于数据的运算

1、定义:将一组杂乱无章的数据按一定规律顺次排列一起,即将无序序列排成一个有序序列的运算。

(如果参加排序的数据结构包含多个数据域,那么排序往往是针对其中某个域而言)

2、排序的应用十分广泛:程序中间接应用(二分查找、最短路径、最小生成树)

3、排序的分类:

按照数据存储介质:内部排序(数据量不大、数据在内存)和外部排序(数据量较大,数据在外存)

*外部排序时,要将数据分批调入内存来排序,中间结果还要及时放入外存,显然外部排序要复杂多。

按比较器个数:串行排序(单处理机,同一时刻比较一对元素)和并行排序(多处理机,同一时刻比较多对元素)

按主要操作:比较排序(用比较的方法:插入排序、交换排序、选择排序、归并排序)和基数排序(不比较元素的大小,仅仅根据元素本身的取值确定其有序位置)

按辅助空间:原地排序(辅助空间用量为O(1)的排序方法,所占辅助空间与参加排序的数据量大小无关)和非原地排序(辅助空间用量超过O(1)的排序方法)

按稳定性:稳定排序(能够使任何数值相等的元素,排序以后相对次序不变)和非稳定排序(不是稳定排序的方法)

*排序的稳定性只对结构类型排序有意义

*排序方法是否稳定,并不能衡量一个排序算法的优劣。

按自然性:自然排序(输入数据越有序,排序的速度越快)和非自然排序(不是自然排序的方法)

4、(1)按排序依据原则

插入排序:直接~、折半~、希尔排序

交换排序:冒泡排序、快速排序

选择排序:简单~、堆排序

归并排序:2-路归并排序

基数排序

(2)按排序所需工作量

简单的排序方法:T(n)=O(n^2)

基数排序:T(n)=O(d.n)

先进的排序方法:T(n)=O(nlogn)

5、存储结构——记录序列以顺序表存储

#define MAXSIZE 20
typedef int KeyType;  //设关键字为整型量
//定义每个记录(数据元素)的结构
Typedef struct{
  KeyType key;   //关键字
  InfoType otherinfo;  //其他数据项
}RedType;
//定义顺序表的结构
Typedef struct{
  RedType r[MAXSIZE+1];   //存储顺序表的结构
                          //r[0]一般作哨兵或缓冲区
  intlength;              //顺序表的长度
}SqList;

6、插入排序

(1)基本思想:

边插边排序,保证子序列中随时都是排好序的

(2)基本操作:有序插入

-1、在有序序列中插入一个元素,保持序列有序,有序长度不断增加

-2、起初,a[0]是长度为1的子序列,然后逐一将a[1]至a[n-1]插入到有序子序列中

(3)有序插入方法

-1、在插入a[i]前,数组a的前半段a[0]-a[i-1]是有序段,后半段是停留于输入次序的“无序段”

-2、插入a[i]使a[0]-a[n-1]有序,也就是要为a[i]找到有序位置j,将a[i]插入在a[j]位置

(4)图示

(5)种类

顺序法定位插入位置——直接插入排序、二分法定位插入位置——二分插入排序、缩小增量多遍插入排序——希尔排序

(6)直接插入排序

*复制插入元素、记录后移,查找插入位置、插入到正确位置

*或者使用“哨兵”

复制为“哨兵”、记录后移查找插入位置,插入到正确位置、插入到正确位置

*算法:

void InsertSort(SqList &L){
  int i,j;
  for(i=2;i<=L.length;++i){
    if(L.r[i].key<L.r[i-1].key){.   //若<,需将L.r[I]插入有序子表
      L.r[0]=L.r[i];                 //复制为哨兵
      for(j=i-1;L.r[0].key<L.r[j].key;--i){
       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值