Codeforces 474 D Flowers

本文解析了 Codeforces 474D 题目,该题涉及计算连续白花的不同组合数量。通过定义状态 f[i] 为到第 i 朵花的组合方式数,并利用动态规划方法进行求解。文章提供了完整的 C++ 代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    http://codeforces.com/problemset/problem/474/D

题目大意:一个东西爱吃花,有两种颜色红R和白W,他吃白花每次都一组一组吃,一组是连续在一起的k朵,问在花的朵数从ai到bi范围里,他总共有多少种吃法。


题目分析:这是一道比较裸的计算方案数的DP。由于题目告诉我们吃白花是一组一组的吃,由此得出当前的状态数必然与i-k的状态数有关系。定义状态f[i]为到i点时的方案数。得出转移:f[i]=f[i-k]+f[i-1];

外带s[i]数组作为f[i]的前缀和,方便输出时处理。


#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define phiF (1000000006)
#define MAXN (1000000+10)
const int Mo=(1000000007);
typedef long long ll;

int t,k,a[100005],b[100005],f[100005],s[100005],max1;

int main(){
	scanf("%d%d",&t,&k);
	For (i,t){
	 scanf("%d%d",&a[i],&b[i]);
	 if (b[i]>max1) max1=b[i];
	}
	f[0]=1;
	For (i,k-1) {
		f[i]=1;
		s[i]=(s[i-1]+f[i])%Mo;
		}
	Fork (i,k,max1) {
		f[i]=(f[i-k]+f[i-1])%Mo;
 	 	s[i]=(s[i-1]+f[i])%Mo;
		}
	For (i,t){
		printf("%d\n",(s[b[i]]-s[a[i]-1]+Mo)%Mo);
	}
	
} 


### Codeforces Problem 1014D 解答与解释 当前问题并未提供关于 **Codeforces Problem 1014D** 的具体描述或相关背景信息。然而,基于常见的竞赛编程问题模式以及可能涉及的主题领域(如数据结构、算法优化等),可以推测该问题可能属于以下类别之一: #### 可能的解法方向 如果假设此问题是典型的计算几何或者图论类题目,则通常会涉及到如下知识点: - 图遍历(DFS 或 BFS) - 贪心策略的应用 - 动态规划的状态转移方程设计 由于未给出具体的输入输出样例和约束条件,这里无法直接针对Problem 1014D 提供精确解答。但是可以根据一般性的解决思路来探讨潜在的方法。 对于类似的复杂度较高的题目,在实现过程中需要注意边界情况处理得当,并且要充分考虑时间效率的要求[^5]。 以下是伪代码框架的一个简单例子用于说明如何构建解决方案逻辑流程: ```python def solve_problem(input_data): n, m = map(int, input().split()) # 初始化必要的变量或数组 graph = [[] for _ in range(n)] # 构建邻接表或其他形式的数据表示方法 for i in range(m): u, v = map(int, input().split()) graph[u].append(v) result = [] # 执行核心算法部分 (比如 DFS/BFS 遍历) visited = [False]*n def dfs(node): if not visited[node]: visited[node] = True for neighbor in graph[node]: dfs(neighbor) result.append(node) for node in range(n): dfs(node) return reversed(result) ``` 上述代码仅为示意用途,实际应用需依据具体题目调整细节参数设置及其功能模块定义[^6]。 #### 关键点总结 - 明确理解题意至关重要,尤其是关注特殊测试用例的设计意图。 - 对于大规模数据集操作时应优先选用高效的时间空间性能表现良好的技术手段。 - 结合实例验证理论推导过程中的每一步骤是否合理有效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值