题目大意:给定n*m的方格图,求用1*2的砖块铺满的方案总数。
题目分析:对于i行j列的格子,有三种情况:1.不填,被i-1行j列的填了。2.填,和i行j-1列构成一个砖块。3.填,同时填上i+1行j列。
也可以用轮廓线。
具体参见这两篇文章:http://www.tuicool.com/articles/2e6B7b
http://blog.csdn.net/u013480600/article/details/19499899
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define phiF (1000000006)
#define MAXN (1000000+10)
typedef long long ll;
int n,m;
ll dp[2050],flag[2050],map[20];
inline bool check(int i){
while(i){
if(i&1){
i>>=1;
if(!(i&1))return 0;
i>>=1;
}else i>>=1;
}
return 1;
}
inline void dfs(int i,int j,int k){
if (k>m) return ;
if (k==m) {
dp[i]+=flag[j];return ;
}
if((i>>k)&1){
dfs(i,j,k+1);
if((i>>(k+1))&1)dfs(i,j|(1<<k)|(1<<(k+1)),k+2);
}
else dfs(i,j|(1<<k),k+1);
}
int main(){
map[0]=1;
For (i,12){
map[i]=map[i-1]<<1;
}
for (;true;){
scanf("%d%d",&n,&m);
if (!(n+m)) return 0;
if (m>n) swap(n,m);
MEM(flag);
Rep (i,map[m]) if (check(i)) flag[i]=1;
Fork (i,2,n){
Rep (j,map[m]) dp[j]=0;
Rep (j,map[m]) dfs(j,0,0);
Rep (j,map[m]) flag[j]=dp[j];
}
printf("%lld\n",flag[map[m]-1]);
}
}