POJ 2411 Mondriaan's Dream 状压dp

题目大意:给定n*m的方格图,求用1*2的砖块铺满的方案总数。


题目分析:对于i行j列的格子,有三种情况:1.不填,被i-1行j列的填了。2.填,和i行j-1列构成一个砖块。3.填,同时填上i+1行j列。

也可以用轮廓线。

具体参见这两篇文章:http://www.tuicool.com/articles/2e6B7b

                                   http://blog.csdn.net/u013480600/article/details/19499899


#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define phiF (1000000006)
#define MAXN (1000000+10)
typedef long long ll;

int n,m;
ll dp[2050],flag[2050],map[20];

inline bool check(int i){  
    while(i){  
        if(i&1){  
            i>>=1;  
            if(!(i&1))return 0;   
            i>>=1; 
        }else i>>=1;  
    }  
    return 1;  
}  
inline void dfs(int i,int j,int k){
	if (k>m) return ;
 	if (k==m) {
		dp[i]+=flag[j];return ;
	}
	if((i>>k)&1){  
        dfs(i,j,k+1);  
        if((i>>(k+1))&1)dfs(i,j|(1<<k)|(1<<(k+1)),k+2);  
    }  
    else dfs(i,j|(1<<k),k+1);  
}


int main(){
	map[0]=1;
	For (i,12){
		map[i]=map[i-1]<<1;
	}
	for (;true;){
		scanf("%d%d",&n,&m);
		if (!(n+m)) return 0;
		if (m>n) swap(n,m);
		MEM(flag);
		Rep (i,map[m]) if (check(i)) flag[i]=1;
		
		Fork (i,2,n){
			Rep (j,map[m]) dp[j]=0;
			Rep (j,map[m]) dfs(j,0,0);
			Rep (j,map[m]) flag[j]=dp[j];
		}
		
		printf("%lld\n",flag[map[m]-1]);
	}
	
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值