工作了十来年,第一次写blog,望有写错的地方,同仁及时指点出来。
下面开始探究python语言的赋值、浅拷贝、深拷贝。
*****python中的原子类型的数据不存在拷贝一说,使用的都是原内存地址的引用******
Python中关于对象复制有三种类型的使用方式【赋值】、【浅拷贝】与【深拷贝】
一、【赋值】
在python语言中,赋值才做运算符执行的都是简单的对象的引用,用过C++的朋友应该都知道引用的好处和妙用:
eg: >>> la = [1,2,3,4,5,'a',['b_1','b_2']]
>>> lb = la
>>> la.append(6)
>>> la
[1, 2, 3, 4, 5, 'a', ['a_1', 'a_2'], 6]
>>> lb
[1, 2, 3, 4, 5, 'a', ['a_1', 'a_2'], 6]
>>> id(la)
44306560
>>> id(lb)
44306560
>>> la is lb
True
>>> [id(x) for x in la, lb]
[44306560, 44306560]
这种情况下,lb和la所指向的内存地址是同一个,都是44306560内存地址的引用。所以当修改la的时候,lb也会发生变化,因为同一块内存内容放生了变化。这个很好理解。
使用 la is la 来判断,返回true,表明他们地址相同,内容相同。
赋值操作(包括对象的赋值、参数的传递、返回值的传递等),除了为lb变量开辟下变量内存的开销以外并没有其他的内存开销。
修改了la,就影响了lb;同理,修改了lb就影响了la。
二、【浅拷贝】(shallow copy)
浅拷贝会创建新对象,其内容是原对象的引用。
三种实现手段:
a)、切片操作: lb=la[:] 或者 lb = [i for i in la]
b)、工厂函数:lb = list(la)
c)、copy模块中的copy函数:lb = copy.copy(la)
eg:
>>> lbs=la[:]
>>> id(lbs)
44495376
>>> id(la)
44306560
>>> import copy
>>> lb = copy.copy(la)
>>> id(lb)
43251832
>>> id(la)
44306560
>>> [id(x) for x in la]
[5546784, 5546772, 5546760, 5546748, 5546736, 5755824, 44494440, 5546724]
>>> [id(x) for x in lb]
[5546784, 5546772, 5546760, 5546748, 5546736, 5755824, 44494440, 5546724]
>>> la.append(7)#添加原子类型元素------>lb不受影响
>>> la
[1, 2, 3, 4, 5, 'a', ['a_1', 'a_2'], 6, 7]
>>> lb
[1, 2, 3, 4, 5, 'a', ['a_1', 'a_2'], 6]
>>> la[5]='a0'#修改原子类型元素------>lb不受影响
>>> la
[1, 2, 3, 4, 5, 'a0', ['a_1', 'a_2'], 6, 7]
>>> lb
[1, 2, 3, 4, 5, 'a', ['a_1', 'a_2'], 6]
>>> la[6].append('a_3')#修改嵌套层里面的原子类型元素------>lb受影响
>>> la
[1, 2, 3, 4, 5, 'a0', ['a_1', 'a_2', 'a_3'], 6, 7]
>>> lb
[1, 2, 3, 4, 5, 'a', ['a_1', 'a_2', 'a_3'], 6]
>>> [id(x) for x in la]
[5546784, 5546772, 5546760, 5546748, 5546736, 44420728,44494440, 5546724, 5546712]
>>> [id(x) for x in lb]
[5546784, 5546772, 5546760, 5546748, 5546736, 5755824,44494440, 5546724]
****关注以上两个红色字体*******
44420728和5755824 因为la[5]='a0',实际上执行的操作是:现在内存中申请一块内存,记录‘a0’,然后把la[5]的引用值修改为此内存的值编号。此处同样执行的是引用。
44494440 :['a_1', 'a_2', 'a_3'] 嵌套的是同一个内存地址
浅拷贝生成新的lb,不是la了,使用is可以发现他们不是同一个对象,使用id查看,发现它们也不指向同一片内存。
但是当我们没有改变里面的元素的时候,使用 id(x) for x in la 和 id(x) for x in lb 时,可以看到二者包含的元素的地址是相同的。
在这种情况下,la和lb是不同的对象,但是内部的各个元素的内存地址确实同一个
但是要注意,浅拷贝之所以称为浅拷贝,是它仅仅只拷贝了一层,在la中有一个嵌套的list,如果我们修改了它,情况就不一样了。
la[5].append("a_3")。查看lb,你将发现lb也发生了变化。原因是:你修改了嵌套的list。修改外层元素,会修改它的引用,让它们指向别的位置,修改嵌套列表中的元素,列表的地址并不会发生变化,指向的还是同一个位置。
三、【深拷贝】(deep copy)
深拷贝形式:copy模块中的deepcopy函数。(仅此一种)
深拷贝:拷贝对象的所有元素,包括多层嵌套的元素。因此是全新开辟的一块内存,和数据源没有任何关系。开销比较大
eg:
>>> la
[1, 2, 3, 4, 5, 'a0', ['a_1', 'a_2', 'a_3', 'a_4'], 6, 7]
>>> lb = copy.deepcopy(la)
>>> [id(x) for x in (la,lb)]
[44306560, 44496776]#2个不同的内存地址
>>> [id(x) for x in la]
[5546784, 5546772, 5546760, 5546748, 5546736, 44420728,44494440, 5546724, 5546712]#嵌套的源数据地址
>>> [id(x) for x in lb]
[5546784, 5546772, 5546760, 5546748, 5546736, 44420728,44493680, 5546724, 5546712]#深拷贝后这个会发生变化,其他的都引用源数据的地址
>>> lb.append(8)
>>> lb
[1, 2, 3, 4, 5, 'a0', ['a_1', 'a_2', 'a_3', 'a_4'], 6, 7, 8]#对lb进行元素添加不会影响la
>>> la
[1, 2, 3, 4, 5, 'a0', ['a_1', 'a_2', 'a_3', 'a_4'], 6, 7]
>>> [id(x) for x in lb]
[5546784, 5546772, 5546760, 5546748, 5546736, 44420728, 44493680, 5546724, 5546712, 5546700]
>>> lb[0]=9 #修改Lb也不会影响到la
>>> lb
[9, 2, 3, 4, 5, 'a0', ['a_1', 'a_2', 'a_3', 'a_4'], 6, 7, 8]
>>> la
[1, 2, 3, 4, 5, 'a0', ['a_1', 'a_2', 'a_3', 'a_4'], 6, 7]
>>> [id(x) for x in lb]
[5546688, 5546772, 5546760, 5546748, 5546736, 44420728, 44493680, 5546724, 5546712, 5546700]
>>> [id(x) for x in la]
[5546784, 5546772, 5546760, 5546748, 5546736, 44420728, 44494440, 5546724, 5546712]
深拷贝即使嵌套的列表具有更深的层次,也不会产生任何影响,因为深拷贝出来的对象根本就是一个全新的对象,不再与原来的对象有任何关联。
关于拷贝操作的警告
1、对于非容器类型,如数字,字符,以及其它“原子”类型,没有拷贝一说。产生的都是原对象的引用。
2、如果元组变量值包含原子类型对象,即使采用了深拷贝,也只能得到浅拷贝。