检索算法

本文介绍了两种在有序数组中查找特定数值的方法:遍历检索和二分检索。遍历检索从头到尾逐一比较,时间复杂度为O(n);二分检索通过不断折半缩小查找范围,时间复杂度为O(log2(n))。并提供了相应的算法设计和源码实现。
摘要由CSDN通过智能技术生成

1.问题

在一个排好序的数组T[1…n]中查找x,如果x在T中,输出x在T的下标j;如果x不在T中,输出j=0。

2.解析

算法一:遍历检索

数组T为有序(这里假设为升序)数组,因此可通过一次遍历,当T[i] > x时,若仍没有找到x,则说明T数组中不存在x;若遍历发现T[k] == x(k < i),则输出k。

算法二:二分检索

二分查找是一种效率较高的查找方法,但要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。二分检索可通过不断二分数组从而缩小查找x的区间。

3.设计

算法一:遍历检索

for(i=0;i<数组长度;i++){
判断a[i]是否是所要寻找的数
如果是 就返回位置即i
}
如果遍历完后仍没有找到,就返回0

算法二:二分检索

int binary_search(vectorv,int key)
{
int left=1,right=v.size()-1,mid;
while(left<=right)
{
mid=(left+right)/2;
if(v[mid]<key) left=mid+1;
else if(v[mid]>key) right=mid-1;
else if(v[mid]==key) return mid;
}
return -1;
}

4.分析

遍历检索:从头到尾依次寻找,时间复杂度O(n)
二分检索:不断折半,时间复杂度O(log2(n))

5.源码

[github源码地址]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值