1.问题
在一个排好序的数组T[1…n]中查找x,如果x在T中,输出x在T的下标j;如果x不在T中,输出j=0。
2.解析
算法一:遍历检索
数组T为有序(这里假设为升序)数组,因此可通过一次遍历,当T[i] > x时,若仍没有找到x,则说明T数组中不存在x;若遍历发现T[k] == x(k < i),则输出k。
算法二:二分检索
二分查找是一种效率较高的查找方法,但要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。二分检索可通过不断二分数组从而缩小查找x的区间。
3.设计
算法一:遍历检索
for(i=0;i<数组长度;i++){
判断a[i]是否是所要寻找的数
如果是 就返回位置即i
}
如果遍历完后仍没有找到,就返回0
算法二:二分检索
int binary_search(vectorv,int key)
{
int left=1,right=v.size()-1,mid;
while(left<=right)
{
mid=(left+right)/2;
if(v[mid]<key) left=mid+1;
else if(v[mid]>key) right=mid-1;
else if(v[mid]==key) return mid;
}
return -1;
}
4.分析
遍历检索:从头到尾依次寻找,时间复杂度O(n)
二分检索:不断折半,时间复杂度O(log2(n))