练习赛一 E AlvinZH的儿时回忆——蛙声一片

AlvinZH的儿时回忆——蛙声一片

时间限制:1000ms   内存限制:65536kb

通过率:24/28 (85.71%)    正确率:24/93 (25.81%)

题目描述

AlvinZH的童年有很多回忆,这回他想起了故乡的夏夜:稻花香里说丰年,听取蛙声一片。

三岁的AlvinZH在散步时走到了一条乡间小路,他想去抓青蛙呱呱呱叫的青蛙,可是单独的青蛙总能在AlvinZH伸手抓住它时向前跳开。AlvinZH继续往前走,每次失败后由于有些挫败感,下一次遇到青蛙他会忽略它(们),同时AlvinZH不是那种轻言放弃的孩子,再下次遇到时他鼓起勇气还是会去抓,他相信他总能抓到的:),直到他前面没有青蛙为止。

我们假设小路上(直线)随机分布着青蛙,且青蛙只在AlvinZH伸手快被抓时才会沿小路往前跳。注意:如果多只青蛙在同一位置,若AlvinZH刚刚经历失败,它们将一起被忽略;否则,只有跳的最远的青蛙(可能多只)可以跳出AlvinZH的魔爪,剩下的全部被抓。

AlvinZH从位置0出发,最后会走到前面没有青蛙为止,请计算出他从出发到停止所走过的路程以及他抓到的青蛙数。

输入

第一个数为数据组数T(0 < T ≤ 10)。

每组数据第一行为小路上的青蛙数n(0<N ≤ 10^5)。

接下来的n行,每行包含两个整数pos和dis(0 ≤ pos ≤ 10^5,0 < dis ≤ 10^3),分别代表这些青蛙的初始位置和每次跳起的距离。

输出

对于每组数据,输出一行,两个整数,分别为AlvinZH走过的路程和他抓到的青蛙数。

输入样例

3
2
1 1
2 2
2
1 3
2 2
3
1 2
2 1
3 1

输出样例

2 0
7 0
7 1

样例解释

第一组:青蛙①从1跳至2,然后忽略在2的两只青蛙(①和②),结束。

第二组:青蛙①从1跳至4,然后忽略在2的青蛙②,之后青蛙①又从4跳至7,然后忽略在7的青蛙①,结束。

第三组:青蛙①从1跳至3,然后忽略在2的青蛙②,之后两只青蛙(①和③)都在3,抓住青蛙③,青蛙①从3跳至5,然后青蛙①又从5跳至7,忽略在7的青蛙①,结束。


解析:

中型模拟。声明三个数组:cnt(记录每个位置上的青蛙数),maxDis(记录每个位置上青蛙能跳得最远的距离),maxCnt(记录每个位置上能跳最远距离的青蛙数)。

输入n个青蛙的位置(pos)和跳起距离(dis)时做以下处理:此位置上的青蛙数加一(cnt[pos]++),更新maxDis和maxCnt,记录当前青蛙所在最远距离ans_1。

设置标志值flag记录 AlvinZH的状态,初始为true,挫败时为false。声明s为当前位置,当没走到最远距离时(s <= ans_1),向前进一步(s++),若当前位置没有青蛙,继续前进,有青蛙时做以下处理:跳得最远的青蛙跳走,更新当前位置的cnt,这些青蛙跳到新的位置后,更新新位置的maxDis,cnt和maxCnt。记录此位置抓到的青蛙数ans_2。最后输出ans_1与ans_2即可。

代码:

#include<cstdio>
#include<algorithm>
#define maxn 2000007
using namespace std;
int cnt[maxn],maxDis[maxn],maxCnt[maxn];


int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int n;
        scanf("%d",&n);
        int ans_1 = 0;
        for(int i = 0; i < n; i++)
        {
            int pos,dis;
            scanf("%d%d",&pos,&dis);
            cnt[pos]++;
            if(maxDis[pos] < dis)
            {
                maxDis[pos] = dis;
                maxCnt[pos] = 0;
            }
            if(maxDis[pos] == dis)
            {
                maxCnt[pos]++;
            }
            ans_1 = max(ans_1,pos);
        }
        bool flag = true;
        int s = -1,ans_2 = 0;
        while(s <= ans_1)
        {
            s++;
            if(!cnt[s]) continue;
            if(flag)
            {
                ans_1 = max(ans_1,s+maxDis[s]);
                cnt[s+maxDis[s]] += maxCnt[s];
                cnt[s] -= maxCnt[s];
                if(maxDis[s+maxDis[s]] < maxDis[s])
                {
                    maxDis[s+maxDis[s]] = maxDis[s];
                    maxCnt[s+maxDis[s]] = 0;
                }
                if(maxDis[s+maxDis[s]] == maxDis[s])
                {
                    maxCnt[s+maxDis[s]] += maxCnt[s];
                }
                ans_2 += cnt[s];
                if(!cnt[s])
                {
                    flag = !flag;
                }
            }
            else
            {
                flag = !flag;
            }
        }
        for(int i = 0; i <= ans_1; i++)
        {
            cnt[i] = 0;
            maxDis[i] = 0;
            maxCnt[i] = 0;
        }
        printf("%d %d\n",ans_1,ans_2);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值