1.方程组解的判定
线性方程组:方程组中的未知数都是一次的不会出现
和
这种高次项
齐次方程组:方程组的常数项都是
,化成标准型后等号右边都是
。
非齐次方程组:方程组中含有一些非
的常数项,化成标准型后等号右边有非
数。
解向量:想象你有一组方程,比如:
,把它写成矩阵形式就是
,这里
。解向量就是能让这组方程都成立的
和
的值组合起来的向量。(解向量在齐次线性方程组和非齐次线性方程组中都存在)
基础解系:想象你有一组齐次线性方程组,也就是等号右边都是
的方程组,像
,写成矩阵形式
,
。这个方程组有很多解,比如
,解向量是
;
,解向量是
等等。基础解系就是从这些解向量里找出来的一组 “最基本” 的解向量。这些 “最基本” 的解向量有两个特点:一是它们之间相互独立,谁也不能由谁变来(线性无关);二是方程组其他所有的解向量都可以由这组 “最基本” 的解向量通过一定的运算(线性组合)得到。基础解系是齐次线性方程组所有解向量构成的向量空间中的极大线性无关组。(基础解系是在齐次线性方程组的背景下定义的,非齐次线性方程组不存在基础解系。)
基础解系中解向量的个数:![]()
方程的个数和未知数的个数能够反映方程解的情况。
齐次线性方程组解的情况的判定步骤
①先把线性方程组化为矩阵
,再把矩阵
化为阶梯型矩阵;
②求矩阵
的秩
;
③当
时,只有零解;当
时,有无穷多解。(
为未知数的个数)
非齐次线性方程组解的情况的判定步骤
①先把线性方程组化为增广矩阵
,再把矩阵
化为阶梯型矩阵;
②求矩阵
的秩
;
③当
时,有唯一解;当
时,有无穷多解;当
时,无解(
为未知数的个数)
1.1.齐次方程组
🦊判断齐次线性方程组