因果论文精读与总结(一)

本文重点梳理从因果树到因果森林、再到广义随机森林,正交随机森林,其中不乏涉及相关论文的精读推导.

1. 因果树

  1. 定义:处理效应的均方误差
    1. 公式:

    2. 核心点:"诚实"估计,honest approach
    3. 定义:①原来的树方法,使用训练样本训练出模型以后,我们用训练样本上各个子集的样本均值做为估计值,然后使用该估计值在测试集(test set)上计算MSE来判断模型的好坏;②修改后的计算方法,将训练样本切割成两部分,一部分仍是训练样本(train set),另一部分是估计样本(estimate set),即在训练样本上训练模型,模型训练好以后放到估计样本上计算估计值,最后使用该估计值在测试集上计算MSE来判断模型的好坏。
    4. 文章亮点:
      1. 改为诚实方法: 修改了MSE的表达式, 标准的Rubin因果框架假设样本个体间不存在相关性(SUTVA),保住了此假设.
      2. 修改了均方误差的计算方法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值