数据结构-树的性质

        树的定义

        树是一个有限数据元素的集合,当数据的量为0时,称为空树。

        在一个非空树T中,最上方的结点没有前驱结点,称为根节点。在一个数据量大于1的树中,除了根节点之外的其余数据元素可以被分为m个互不相交的集合T1,T2,T3等。其中每一个集合T都可以看作一个单独的树,称为整个树的子树。

        树拥有层级结构,而这种层级结构由递归实现。从根节点开始,根节点为第一层。经过一次递归得到的结点称为第二层,以此类推。而如果同一层的节点之间互相连通,则不成为树结构。

        也就是说,树结构的每一层之间都至少有两个节点互相连通,而同一层之间的每一个结点都不能互相连通。

        树的基本术语:

结点的度结点的分支数
叶子度为0的结点
结点的层次根节点的度为1,根节点的子树为第2层
树的度树中所有结点的度的最大值
树的深度树中所有结点层次的最大值
有序树每颗子树的左右顺序不可更换
无序树

每颗子树的左右顺序可以更换

森林m个互不相交的树的集合

        二叉树

        二叉树的特点:

        (1) 每个结点最多有两棵子树

        (2) 子树有左右之分

        如果一个深度为K的二叉树的节点数为最大值则称为满二叉树。

        若有一颗深度为K,节点数为n的二叉树,将它与同一颗同深度的满二叉树中的所有结点从上到下、从左到右的顺序进行编号。如果该二叉树中的每一个节点分别与满二叉树中编号为1~n的结点位置一一对应,则称该二叉树为完全二叉树。

         二叉树的性质:

        (1)在二叉树的第i层上最多有2^{i-1}个结点(i\geqslant 1

        (2)深度为K的二叉树最多有2^{K}-1个结点(K\geqslant 1

        (3)对于任意一颗二叉树,如果度为0的结点为m个,度为2的结点为n个,则m=n+1

        (4)具有n个结点的完全二叉树中的所有结点从上到下、从左到右的顺序编号,则对任意一个结点i,都有:

                ①如果i=1,则结点i是这颗完全二叉树的根,没有双亲。如果i\neq 1,则其双亲接待你的编号为\left \lfloor \frac{i}{2} \right \rfloor

                ②如果i> \frac{n}{2},则结点i没有左孩子,如果i\leq \frac{n}{2},则其左孩子结点的编号为2i

                ③如果i> \frac{n-1}{2},则结点i没有有孩子,如果i\leq\frac{n-1}{2},则其右孩子结点的编号为2i+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值