AI 十一、Python中,模型能力评估与训练实战

在深度学习中,模型的能力评估和训练实战是非常重要的步骤。有效的评估可以帮助我们了解模型的优缺点,进而进行调整和改进。而良好的训练实践能够确保模型能够在实际场景中表现得更好。

1. 模型能力评估

模型能力评估的主要目的是衡量模型的表现,确保它能够对输入数据做出准确的预测。不同任务有不同的评估指标,例如分类、回归等。

1.1 分类模型评估指标

对于分类任务,常用的评估指标包括:

  • 准确率(Accuracy):预测正确的样本占总样本数的比例。
  • 精确度(Precision):正确预测为正类的样本占所有预测为正类的样本的比例。
  • 召回率(Recall):正确预测为正类的样本占所有真实为正类的样本的比例。
  • F1分数:精确度和召回率的调和平均数,综合考虑了两者。
  • AUC-ROC曲线:评估模型在不同阈值下的表现,AUC值越接近1越好。
示例:使用 scikit-learn 计算评估指标
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

# 假设这是你的预测标签和真实标签
y_true = np.array([0, 1, 1, 0, 1, 0, 1, 0, 0, 1])
y_pred = np.array([0, 1, 1, 0, 0, 0, 1, 0, 1, 1])

# 计算准确率
accuracy = accuracy_score(y_true, y_pred)
print(f"Accuracy: {
     accuracy:.2f}")

# 计算精确度
precision = precision_score(y_true, y_pred)
print(f"Precision: {
     precision:.2f}")

# 计算召回率
recall = recall_score(y_true, y_pred)
print(f"Recall: {
     recall:.2f}")

# 计算F1分数
f1 = f1_score(y_true, y_pred)
print(f"F1 Score: {
     f1:.2f}")

# 假设是二分类问题,计算AUC
# 如果有概率输出,可以计算AUC
y_prob = np.array([0.1, 0.9,<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十方来财

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值