内容列表
一,前提
二,卷积层原理
1.概念
2.作用
3. 卷积过程
三,nn.conv1d
1,函数定义:
2, 参数说明:
3,代码:
4, 分析计算过程
四,nn.conv2d
1, 函数定义
2, 参数:
3, 代码
4, 分析计算过程
一,前提
在开始前,要使用pytorch实现以下内容,需要掌握tensor和的用法
二,卷积层原理
1.概念
卷积层是用一个固定大小的矩形区去席卷原始数据,将原始数据分成一个个和卷积核大小相同的小块,然后将这些小块和卷积核相乘输出一个卷积值(注意这里是一个单独的值,不再是矩阵了)。
2.作用
特征提取
卷积的本质就是用卷积核的参数来提取原始数据的特征,通过矩阵点乘的运算,提取出和卷积核特征一致的值,如果卷积层有多个卷积核,则神经网络会自动学习卷积核的参数值,使得每个卷积核代表一个特征。
3. 卷积过程
三,nn.conv1d
这里我们拿最常用的conv1d举例说明卷积过程的计算。
conv1d是一维卷积,它和conv2d的区别在于只对宽度进行卷积,对高度不卷积。
1,函数定义:
torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding=0, dil