自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 sklearn如何求解线性回归

sklearn是如何求解线性回归问题的? 有没有脱口而出梯度下降,起码我自己下意识的认为是使用梯度下降,直到有一次无意中看到sklearn的用户指导手册,1.1.1.2 一行小小的备注: The least squares solution is computed using the singular value decomposition of X. 哦?原来sklearn是用SVD求解线性回归啊~ 线性回归的loss function就是在求解最小二乘(least squares)嘛,那么来简单聊一下为

2021-04-05 22:49:21 393

原创 为什么是梯度?

我们经常会用到梯度下降,那为什么是梯度呢?为什么不是硬度?长度?零度?百度? 优化问题分成无约束优化和有约束优化,有约束优化最终都要调整成无约束优化问题,所以我们直接看无约束优化问题,它的标准形式如下: min⁡xf(x) \min_{x}f(x) xmin​f(x) 严格的数学定义里要求f(x)f(x)f(x)是一个平滑函数,一般来说xxx是向量,比如机器学习里面动不动就是几百维的,我们的目标是找到一个xxx使得f(x)f(x)f(x)最小,小学二年级在学习完微积分后我们知道最小值肯定出现在f(x)f(x

2021-04-01 13:45:11 217

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除