- 博客(2)
- 收藏
- 关注
原创 sklearn如何求解线性回归
sklearn是如何求解线性回归问题的? 有没有脱口而出梯度下降,起码我自己下意识的认为是使用梯度下降,直到有一次无意中看到sklearn的用户指导手册,1.1.1.2 一行小小的备注: The least squares solution is computed using the singular value decomposition of X. 哦?原来sklearn是用SVD求解线性回归啊~ 线性回归的loss function就是在求解最小二乘(least squares)嘛,那么来简单聊一下为
2021-04-05 22:49:21 393
原创 为什么是梯度?
我们经常会用到梯度下降,那为什么是梯度呢?为什么不是硬度?长度?零度?百度? 优化问题分成无约束优化和有约束优化,有约束优化最终都要调整成无约束优化问题,所以我们直接看无约束优化问题,它的标准形式如下: minxf(x) \min_{x}f(x) xminf(x) 严格的数学定义里要求f(x)f(x)f(x)是一个平滑函数,一般来说xxx是向量,比如机器学习里面动不动就是几百维的,我们的目标是找到一个xxx使得f(x)f(x)f(x)最小,小学二年级在学习完微积分后我们知道最小值肯定出现在f(x)f(x
2021-04-01 13:45:11 217
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人