数据分析处理——透析表和交叉表

本文介绍了数据透视表的概念和在数据分析中的重要性,强调了透析表的灵活性和功能强大,要求使用者明确需求。同时,展示了pandas库中pivot_table函数的用法。接着,文章转向交叉表,指出交叉表是透视表的一种特殊形式,用于计算分组频率,并演示了pandas的crosstab函数及其参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1透视表

  数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。 之所以称为数据透视表,是因为可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。

  数据分析中的透析表十分强大,甚至可以说是相当于分组聚合外加哑变量三个步骤了。但有个前提就是:在使用透析表之前,你必须明确知道自己想要的是什么,需要做什么!

  当然,有时候你很难直接看出需求。这时候我们就得添加项目和检查每一步来验证我们一步一步得到期望的结果。为了查看什么样的外观最能满足你的需要,就不要害怕处理顺序和变量的繁琐。

 

函数

pands.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

名称 说明
data 接收DataFrame。表示透视表的数据。无默认。
values 接收字符串。用于指定想要聚合的数据字段名,默认使用全部数据。默认为None。
index 接收string或list。表示行分组键。默认为None。
columns 接收string或list。表示列分组键。默认为None。
aggfunc 接收functions。表示聚合函数。默认为mean。
fill_value 接受scalar。表示是否将fill_value的数值代替缺失值。默认为None。
margins 接收boolearn。表示汇总(Total)功能的开关,设为True后结果集中会出现名为“ALL”的行和列。默认为True。
dropna 接收boolearn。表示是否删掉全为NaN的列。默认为False。
mar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WoLykos

若对你有所帮助,请鼓励我一下~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值