#(1)创建两个一维数组分别存储超市名称和水果名称
supermarket=np.array(['大润发','沃尔玛','好德','农工商'])
fruit=np.array(['苹果','梨','香蕉','橘子','芒果'])
#(2)创建一个4*5的二维数组存储不同超市的水果价格,其中价格(单位为元)由4-10范围内的随机数生成
price=np.random.randint(4,10,size=(4,5))
print(price)
#(3)选择大润发的苹果和好德的香蕉,并将价格增加1元
x3=price[(supermarket=='大润发')|(supermarket=='好德'),(fruit=='苹果')|(fruit=='香蕉')]+1
print(x3)
#(4)农工商的水果大减价,将所有的水果价格减少2元
x4=price[supermarket=='农工商']-2
print(x4)
#(5)统计4个超市苹果和芒果的销售均价
x5=price[:,(fruit=='苹果')|(fruit=='芒果')].mean(axis=0)
print(x5)
#(6)找出橘子价格最贵的超市名称(不是编号)
x6=price[:,fruit=='橘子'].argmax()
print(supermarket[x6])
1.“大润发”、“沃尔玛”、“好德”和“农工商”四个超市都卖苹果、梨、香蕉、橘子和芒果五种水果。使用NumPy的ndarray实现以下功能。
1)创建两个一维数组分别存储超市名称和水果名称。
2)创建一个4×5的二维数组存储不同超市的水果价格,其中价格由4~10范围内的随机数生成。
3)选择“大润发”的苹果和“好德”的香蕉,并将价格增加1元。
4)“农工商”水果大减价,所有水果价格减2元。
5)统计四个超市苹果和芒果的销售均价。
6)找出橘子价格最贵的超市名称(不是编号)。