[bzoj4361]Isn

50 篇文章 0 订阅
19 篇文章 0 订阅

题目大意

给定一个长度为n的序列A,如果当前序列不是不下降的,就必须删去其中一个数,直到得到一个不下降的序列,求可以的操作方案数模1000000007。

数据范围

10%:n≤10
30%:n≤20
45%:n≤50
65%:n≤200
100%:1≤n≤2000

暴力做法

10%直接上暴力。

30%枚举哪些数删去,然后找出能最后一个删去的数,放在最后一个后剩下随便排列。
什么数能放在最后删去?假设第i个数是删去的,它的前一个保留的数为a,后一个保留的数为b,那么不满足a≤A[i]≤b的可以放在最后。

设状态

设f[i][j]表示前i个数中,保留了j个,其中最后一个保留的是i,可能的操作方案数。
但是如果是方案数,转移略复杂。把它改成表示的是可能的序列数,就很显然:

f[i][j]=i=1i1,A[i]A[i]f[i][j1]
最后给每个f[i][j]乘上(n-j)!就是方案数了。
这样就能得出答案了吗?不行!直接乘阶乘会把不合法,即把不能放在最后的数放在最后的方案算入答案。
一个去掉不合法的想法是设多一维,f[i][j][k]中k表示有k个数不能放在最后,其它东西意义一样。枚举i’时可以求出i’与i之间有多少个数是不能放在最后的,转移显然。最后也是乘上一个组合数。假设最终序列由A[i]结尾,由于i+1——n之间可能又存在不能放在最后的数,所以可以放进一个A[n+1],赋值为很大的数,然后只算以A[n+1]结尾的答案。
时间复杂度 O(n4)

容斥

合法方案数=总方案数-不合法方案数

那么可以不加一维,先预处理出上面的f[i][j]。然后设g[j]表示保留j个数的合法方案数
首先保留j个的总方案数就是 ni=jf[i][j]
然后求不合法方案数:
不合法方案数就是删除的序列中,最后一个或几个是不可以放在最后的。可以看成是一个合法的操作后又加了几次删除操作。
那么可以枚举删了几次后序列变成不下降,然后剩下的几次就是删除序列中的数。
那么转移为:

g[j]=i=jnf[i][j]k=j+1ng[k]Cjk(kj)!

其中枚举序列变成不下降时长度为k,然后又删了k-j个数,顺序任意。
求g数组的时间复杂度是 O(n2) 的。预处理f数组时,打个树状数组即可优化到 O(n2logn)

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int mo=1e9+7,maxn=2005;

typedef long long LL;

int n,m,f[maxn][maxn],Fact[maxn],C[maxn][maxn],g[maxn],s[maxn][maxn],b[maxn],rank[maxn];

LL a[maxn];

bool cmp(int x,int y)
{
    return a[x]<a[y];
}

int lowbit(int x)
{
    return x & (-x);
}

void add(int x,int y,int z)
{
    for (;x<=m;x+=lowbit(x)) s[x][y]=(s[x][y]+z)%mo;
}

int getsum(int x,int y)
{
    int sum=0;
    for (;x;x-=lowbit(x)) sum=(sum+s[x][y]) %mo;
    return sum;
}

int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++) scanf("%lld",&a[i]); a[n+1]=1e16;
    for (int i=1;i<=n;i++) b[i]=i;
    sort(b+1,b+n+1,cmp);
    m=1;
    for (int i=1;i<=n;i++)
    {
        m+=(a[b[i]]>a[b[i-1]]);
        rank[b[i]]=m;
    }
    Fact[0]=1; C[0][0]=1;
    for (int i=1;i<=n;i++)
    {
        C[i][0]=C[i][i]=1;
        Fact[i]=(LL)Fact[i-1]*i%mo;
        for (int j=1;j<i;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%mo;
    }
    add(1,0,1);
    for (int i=1;i<=n;i++)
    {
        for (int j=i;j;j--)
        {
            f[i][j]=getsum(rank[i],j-1);
            add(rank[i],j,f[i][j]);
        }
    }
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<=i;j++) f[i][j]=(LL)f[i][j]*Fact[n-j]%mo;
    }
    for (int j=n;j;j--)
    {
        g[j]=0;
        for (int i=j;i<=n;i++) g[j]=(g[j]+f[i][j]) % mo;
        for (int i=j+1;i<=n;i++) g[j]=(g[j]+mo-(LL)g[i]*C[i][j]%mo*Fact[i-j]%mo)%mo;
    }
    int ans=0;
    for (int i=1;i<=n;i++) ans=(ans+g[i])%mo;
    printf("%d\n",ans);
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值