【NOIP2016提高A组集训第13场11.11】最大匹配

题目大意

给你一棵n个节点的树,让你把它变成二分图,然后求最大匹配和最大匹配的方案数模 109+7 的值。
n≤100000

转化成二分图

如何把一棵树转化成二分图。
因为二分图中,处于同一集合的点两两之间没有边,所以可以这样:任取一点为根,然后根据深度的奇偶性分为两个集合。显然正确。

DP

设f[i][0/1]表示以i为根的子树的最大匹配。其中f[i][0]表示i不与儿子连边,f[i][1]表示i和某个儿子匹配。
考虑转移:

f[i][0]=jimax(f[j][0],f[j][1])

f[i][1]=max(jijjmax(f[j][0],f[j][1])+f[j][0])+1

如果枚举j’会很慢,不过可以把所有儿子抽出来,然后打个前缀和、后缀和。
计算方案时要注意:如果f[j][0]=f[j][1],要把两个方案都算进来。

时间复杂度O(n)

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn=100005,maxm=200005,mo=1e9+7;

typedef long long LL;

int Texi,P,n,tot,h[maxn],e[maxm],nxt[maxm],f[maxn][2],g[maxn][2],p[maxn][2],pre[maxn][2],suf[maxn][2];

char c;

int read()
{
    for (c=getchar();c<'0' || c>'9';c=getchar());
    int x=c-48;
    for (c=getchar();c>='0' && c<='9';c=getchar()) x=x*10+c-48;
    return x;
}

void add(int x,int y)
{
    e[++tot]=y; nxt[tot]=h[x]; h[x]=tot;
}

void dp(int x,int y)
{
    int cnt=0;
    for (int i=h[x];i;i=nxt[i]) if (e[i]!=y) dp(e[i],x);
    for (int i=h[x];i;i=nxt[i]) if (e[i]!=y)
    {
        cnt++;
        if (f[e[i]][0]>f[e[i]][1])
        {
            p[cnt][0]=f[e[i]][0];
            p[cnt][1]=g[e[i]][0];
        }else if (f[e[i]][0]<f[e[i]][1])
        {
            p[cnt][0]=f[e[i]][1];
            p[cnt][1]=g[e[i]][1];
        }else
        {
            p[cnt][0]=f[e[i]][0];
            p[cnt][1]=(g[e[i]][0]+g[e[i]][1])%mo;
        }
    }
    pre[0][1]=suf[cnt+1][1]=1; pre[0][0]=suf[cnt+1][0]=0;
    for (int i=1;i<=cnt;i++)
    {
        pre[i][0]=pre[i-1][0]+p[i][0];
        pre[i][1]=(LL)pre[i-1][1]*p[i][1]%mo;
    }
    for (int i=cnt;i;i--)
    {
        suf[i][0]=suf[i+1][0]+p[i][0];
        suf[i][1]=(LL)suf[i+1][1]*p[i][1]%mo;
    }
    f[x][0]=pre[cnt][0]; g[x][0]=pre[cnt][1];
    f[x][1]=-1;
    int i=0;
    for (int j=h[x];j;j=nxt[j]) if (e[j]!=y)
    {
        i++;
        if (pre[i-1][0]+suf[i+1][0]+f[e[j]][0]+1>f[x][1])
        {
            f[x][1]=pre[i-1][0]+suf[i+1][0]+f[e[j]][0]+1;
            g[x][1]=0;
        }
        if (pre[i-1][0]+suf[i+1][0]+f[e[j]][0]+1==f[x][1])
        g[x][1]=(g[x][1]+(LL)pre[i-1][1]*suf[i+1][1]%mo*g[e[j]][0])%mo;
    }
}

void work()
{
    n=read();
    memset(h,0,sizeof(h)); tot=0;
    for (int i=1;i<n;i++)
    {
        int x=read(),y=read();
        add(x,y); add(y,x);
    }
    memset(f,0,sizeof(f));
    dp(1,0);
    printf("%d",max(f[1][0],f[1][1]));
    if (P==2)
    {
        printf(" ");
        if (f[1][0]>f[1][1]) printf("%d",g[1][0]);
        else if (f[1][0]<f[1][1]) printf("%d",g[1][1]);
        else printf("%d",(g[1][0]+g[1][1])%mo);
    }
    printf("\n");
}

int main()
{
    freopen("hungary.in","r",stdin); freopen("hungary.out","w",stdout);
    for (Texi=read(),P=read();Texi--;work());
    fclose(stdin); fclose(stdout);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值