题目大意
给你一棵n个节点的树,让你把它变成二分图,然后求最大匹配和最大匹配的方案数模
109+7
的值。
n≤100000
转化成二分图
如何把一棵树转化成二分图。
因为二分图中,处于同一集合的点两两之间没有边,所以可以这样:任取一点为根,然后根据深度的奇偶性分为两个集合。显然正确。
DP
设f[i][0/1]表示以i为根的子树的最大匹配。其中f[i][0]表示i不与儿子连边,f[i][1]表示i和某个儿子匹配。
考虑转移:
f[i][0]=∑j是i的儿子max(f[j][0],f[j][1])
f[i][1]=max(∑j是i的儿子且j≠j′max(f[j][0],f[j][1])+f[j′][0])+1
如果枚举j’会很慢,不过可以把所有儿子抽出来,然后打个前缀和、后缀和。
计算方案时要注意:如果f[j][0]=f[j][1],要把两个方案都算进来。
时间复杂度O(n)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=100005,maxm=200005,mo=1e9+7;
typedef long long LL;
int Texi,P,n,tot,h[maxn],e[maxm],nxt[maxm],f[maxn][2],g[maxn][2],p[maxn][2],pre[maxn][2],suf[maxn][2];
char c;
int read()
{
for (c=getchar();c<'0' || c>'9';c=getchar());
int x=c-48;
for (c=getchar();c>='0' && c<='9';c=getchar()) x=x*10+c-48;
return x;
}
void add(int x,int y)
{
e[++tot]=y; nxt[tot]=h[x]; h[x]=tot;
}
void dp(int x,int y)
{
int cnt=0;
for (int i=h[x];i;i=nxt[i]) if (e[i]!=y) dp(e[i],x);
for (int i=h[x];i;i=nxt[i]) if (e[i]!=y)
{
cnt++;
if (f[e[i]][0]>f[e[i]][1])
{
p[cnt][0]=f[e[i]][0];
p[cnt][1]=g[e[i]][0];
}else if (f[e[i]][0]<f[e[i]][1])
{
p[cnt][0]=f[e[i]][1];
p[cnt][1]=g[e[i]][1];
}else
{
p[cnt][0]=f[e[i]][0];
p[cnt][1]=(g[e[i]][0]+g[e[i]][1])%mo;
}
}
pre[0][1]=suf[cnt+1][1]=1; pre[0][0]=suf[cnt+1][0]=0;
for (int i=1;i<=cnt;i++)
{
pre[i][0]=pre[i-1][0]+p[i][0];
pre[i][1]=(LL)pre[i-1][1]*p[i][1]%mo;
}
for (int i=cnt;i;i--)
{
suf[i][0]=suf[i+1][0]+p[i][0];
suf[i][1]=(LL)suf[i+1][1]*p[i][1]%mo;
}
f[x][0]=pre[cnt][0]; g[x][0]=pre[cnt][1];
f[x][1]=-1;
int i=0;
for (int j=h[x];j;j=nxt[j]) if (e[j]!=y)
{
i++;
if (pre[i-1][0]+suf[i+1][0]+f[e[j]][0]+1>f[x][1])
{
f[x][1]=pre[i-1][0]+suf[i+1][0]+f[e[j]][0]+1;
g[x][1]=0;
}
if (pre[i-1][0]+suf[i+1][0]+f[e[j]][0]+1==f[x][1])
g[x][1]=(g[x][1]+(LL)pre[i-1][1]*suf[i+1][1]%mo*g[e[j]][0])%mo;
}
}
void work()
{
n=read();
memset(h,0,sizeof(h)); tot=0;
for (int i=1;i<n;i++)
{
int x=read(),y=read();
add(x,y); add(y,x);
}
memset(f,0,sizeof(f));
dp(1,0);
printf("%d",max(f[1][0],f[1][1]));
if (P==2)
{
printf(" ");
if (f[1][0]>f[1][1]) printf("%d",g[1][0]);
else if (f[1][0]<f[1][1]) printf("%d",g[1][1]);
else printf("%d",(g[1][0]+g[1][1])%mo);
}
printf("\n");
}
int main()
{
freopen("hungary.in","r",stdin); freopen("hungary.out","w",stdout);
for (Texi=read(),P=read();Texi--;work());
fclose(stdin); fclose(stdout);
return 0;
}